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Die folgende Darstellung der Grundprinzipien der Quantenmechanik (QM) basiert grundsitzlich auf
v. Neumann|[1932]]. Allerdings wurden Bezeichnungen modernisiert und neuere Ergebnisse hinzuge-
fiigt 'l Unscharfe, verallgemeinerte Observablen werden ebenso behandelt wie offene Systeme und
Dekohirenz. Zustinde werden dabei durch Dichteoperatoren repréisentierﬂ

Weiterhin wird versucht, die Theorie getrennt von der Interpretation darzustellen. Zu diesem Zweck
werden die Sdtze der Theorie in der interpretationsneutralen Sprache der Wahrscheinlichkeitstheorie
formulierlﬂ Als Minimalinterpretation (MI) wird die Interpretation der verwendeten Grundbegriffe in
physikalischen Experimenten skizziert, wobei auch einige historisch bedeutsame Experimente aufge-
fiihrt werden. Dabei soll auch verdeutlicht werden, dass die QM bei allen philosophischen Problemen,
die sie aufwerfen mag, eine bestens bewihrte physikalische Theorie darstellt.

In den Abschnitten 1 bis 3 werden die Grundprinzipien der abstrakten QM (vgl. v. Weizsicker, 1985)
behandelt, die prinzipiell in jeder quantenphysikalischen Theorie gelten (vgl. [Weinberg, |1995)). In
Abschn. 4 werden einige elementare Ergebnisse der nicht-relativistischen Teilchenmechanik betrach-
tet, wobei auch der Bezug zur klassischen Newtonschen Mechanik beleuchtet wird. Dem umstrittenen
Reduktions-/Projektions-/Kollapspostulat wird zusammen mit dem Messprozess ein separates Kapitel
eingerdumt.

1 Stochastik: Observablen, Zustinde, Erwartungswerte
Jedem System wird ein separabler, komplexer Hilbertraunﬂ ‘H zugeordnet, wobei die Observablen
des Systems durch selbstadjungierte Operatoren im Hilbertraum H
OCOMH)={XeDH)| X =X},
die Zustdnde dagegen durch Dichteoperatoren auf dem Hilbertraum H
SCSH)={W e LH)|W =W (W) =1, W >0}

dargestelllﬂ werden. Fiir ein System im Zustand W € § ist der Erwartungswert der Observablen
XeO
(X),, =u(WX) (1.1)

lVgl. Busch et al.|[1995],Ballentine; [[1998]], Nielsen and Chuang| [2000], de Muynck| [2002]], Breuer and Petruccione
[2002]

“Ein neueres Pldadoyer dafiir findet sich in[Weinberg| [2014].

3Dabei sind unterschiedliche Interpretationen des Wahrscheinlichkeitsbegriffs (vgl. Gillies, [2000) moglich.

“bzgl. der mathematischen Begriffe und Notation s. Anhang “Hilbertraum und lineare Operatoren im Hilbertraum”.

3In der elementaren Quantenmechanik kénnen alle selbstadjungierten Operatoren im Hilbertraum als Observablen und
alle Dichteoperatoren auf dem Hilbertraum als Zustéinde betrachtet werden, d.h. O = O(H),S = S(H).

Dies ist fiir Systeme mit Superauswahlregeln nicht moglich, dort miissen die Mengen O und S eingeschrénkt werden.
Dabei ist zu fordern, dass die beschrinkten Observablen @ C O durch die hermiteschen Elemente giner vollstdndigen
C*-Algebra von Operatoren und die Zustandsoperatoren S durch die Erwartungswertfunktionale auf O gegeben sind. Fiir
die unbeschrinkten Observablen in O miissen alle Projektoren der zugehdrigen PVMs in O liegen.



Zur Vereinfachung der mathematischen Verhiltnisse betrachtet man oftmals nur die Teilmenge der beschrdnkten Obser-
vable

OCOM)={X e LH)|X =X} cOm)

MI:

Werden Aussagen der Theorie im Experiment iiberpriift, so erfolgt das in der Regel mittels statisti-
scher Versuchsreihen, in denen ein Einzelexperiment hdufig genug wiederholt wird, sodass man zu
statistisch signifikanten Aussagen gelangt.

Fiir jedes Einzelexperiment wird ein einzelnes Exemplar des untersuchten Systems so prdpariert, dass
der Zustand W des Systems dadurch festgelegt ist. Die Priparierung erfolgt mittels einer Apparatur
(z.B. Teilchenbeschleuniger) und hédngt von gewissen Parametern (z.B. Geometrische Anordnung,
Beschleunigerspannung, ...) ab, die in der Regel nur unvollstidndig kontrolliert werden konnen. Mit-
tels einer Messapparatur (z.B. Zidhlrohr) wird dann an dem System der Wert einer (oder gleichzeitig
mehrerer) Observablen X (z.B. der Ortskoordinaten X, Y, 7)) gemessen.
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Wird das Einzelexperiment in einer statistischen Versuchsreihe wiederholt, ist es wichtig, dass sich
die einzelnen Wiederholungen gegenseitig nicht beeinflussen und statistisch unabhdngig voneinander
sind. Der Mittelwert der Messergebnisse 1, ..., x, sollte dann “nahe” beim theoretisch durch (I.T))
gegebenen Erwartungswert der Observablen <X >W liegen, wenn das Einzelexperiment oft genug
wiederholt wird (n — 00)
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Die Methoden der Wahrscheinlichkeitstheorie und Statistik erméglichen prizisere Aussagen dariiber, inwieweit Versuchs-
ergebnisse theoretische Aussagen bestitigen (vgl.|D’ Agostini|[2003]]). Eine entsprechende Methodik setzt nicht notwendig
eine frequentistische Interpretation des Wahrscheinlichkeitsbegriffs voraus, auch wenn diese oftmals mit der Minimalin-
terpretation verbunden wird (wie z.B. bei Ballentine| [1998]] und Ludwig| [1983]) - eine Verbindung, die dann auch als
Ensembleinterpretation bezeichnet wird. Die Ermittlung der relativen Haufigkeit kann aber auch als Messung einer auf
andere Weise definierten objektiven/ontischen Wahrscheinlichkeit bzw. Propensitdt verstanden werden (vgliGillies| 2000,
Kap.7). Andererseits konnen alle Experimente auch Bayesianisch als Methode der Informationsgewinnung eines han-
delnden Subjekts (Agenten) betrachtet werden (vgl. [Caves et al., 2002|). Wahrscheinlichkeiten werden dann epistemisch
interpretiert, entweder als intersubjektive/objektive Quantifizierung der vorhandenen Information (vgl.|Jaynes|, [2003) oder
einfach als Ausdruck der subjektiven Uberzeugung eines Agenten wie z.B. im QBism (vgl.|Fuchs et al.|[2014] ).

Die statistische Interpretation der Zustdnde in der QM geht auf |Born| [[1926] zuriick und war Ausgangspunkt der Kopen-
hagener Interpretation von Bohr und Heisenberg, deren Wahrscheinlichkeitsbegriff sowohl epistemische (subjektive) als
auch ontische (objektive) Elemente aufweist (vgl. Heisenberg, |1959).

Da ein unbeschrinkter Operator X nicht im ganzen Hilbertraum definiert ist und auch die Spur eines solchen Opera-
tors nicht immer existiert, stellen sich Existenzfragen bzgl. tr(X W). Es ist daher einfacher, nur beschrinkte Operatoren
auf dem Hilbertraums zu betrachten. Diese bilden eine C*-Algebra, die sich bzgl. der algebraischen Operationen gutartig
verhilt, sodass X W fur alle X € O(#) und alle W € S(H) auf ganz 7 definiert ist und tr(X W) immer existiert. Diese
Einschriankung der Observablen hat den Schonheitsfehler, dass die iiblichen Lehrbuch-Operatoren fiir Ort, Impuls und
Energie nicht dazugehoren, da sie alle unbeschréinkt sind. Es konnen aber beschrinkte Operatoren angegeben werden,
die diese in gewissen Sinn approximieren. In der Quanteninformatik sind die Verhiltnisse unkompliziert, da man dort
ausschlieBlich endlichdimensionale Hilbertraume (fiir n Qubits H = Czn) verwendet, in denen alle linearen Operatoren
(C?" x C?" — Matrizen) beschriinkt sind.



MI:

Diese Darstellung eines Experiments ist natiirlich hochgradig vereinfacht. In vielen Experimenten, in denen die quan-
tenmechanische Beschreibung eines Systems z.B. eines Teilchens, untersucht werden soll, wird von vorneherein eine
unbestimmte grofie Anzahl verwendet, z.B. “Teilchenstrahlen”, an denen dann makroskopische Phinomene beobachtet
werden. Oftmals wird dabei bereits durch die Messmethode eine Summe bzw. ein Mittelwert gebildet. Ein einfaches
Beispiel liefert das Stern-Gerlach-Experiment (Gerlach and Stern||1922), bei dem mit Hilfe eines Ofens und rotieren-
der Lochscheiben ein Strahl von Silberatomen prépariert wurde. Traf dieser auf ein Glasplattchen, so bildete sich nach
einer Weile ein sichtbarer, streifenformiger Silberfleck heraus. Wurde beim Experiment ein inhomogenes Magnetfeld an-
gelegt, so bildeten sich zwei Streifen (s. Fotos auf der Postkarte von W. Gerlach an N. Bohr). Das Experiment wurde
spater als wiederholte Spin-Messung an einzelnen Silberatomen interpretiert: die beiden Streifen werden von Atomen
mit unterschiedlichen Spinwerten gebildet, die Stirke des Silberbelags auf dem Glasplittchen gibt Aufschluss iiber die
Aufschlagwahrscheinlichkeit.
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In der Auswertung werden also die Ergebnisse auf eine grole Zahl von Einzelexperimenten mit jeweils einem einzelnen
Teilchen zuriickgefiihrt. Dies ist natiirlich nur dann moglich, wenn sich die Teilchen gegenseitig im Experiment nicht nen-
nenswert beeinflussen. Experimentell kann letzteres dadurch iiberpriift werden, dass man die Intensitét des Teilchenstrahls
und die Versuchsdauer variiert.

Aber auch die Beobachtung einzelner Teilchen war von Anfang an eine wichtige Erkenntnisquelle fiir die Quantenphysik.
Schon in Rutherfords berithmten Streuexperimenten mit Alphateilchen (Heliumkernen), die von einem radioaktiven Pra-
parat ausgesandt und an den Atomkernen einer diinnen Goldfolie gestreut wurden, wurde das vereinzelte “Aufblitzen” von
Lichtpunkten an einem Szintillationsschirm als Einschlag je eines einzelnen Teilchens gedeutet. Rutherfords Mitarbeiter
Marsden und Geiger zihlten diese Szintillationen am Anfang unter einem Mikroskop noch “per Hand”, vgl. |Rutherford
[1911]. Rutherfords klassische Streuformel konnte dann die winkelabhingige Statistik der Teilcheneinschlédge erkldren.

Rutherfords Streuexperiment
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Von Anfang bis Ende kontrollierte Experimente mit einzelnen zeitweise isolierten Quantensystemen sind heute moglich,
stellen aber eine grofe technische Herausforderung dar, wie die Schwierigkeiten bei der Entwicklung eines Quantencom-
puters zeigen. Die Abschirmung der Quantensysteme ist auch im Hochvakuum niemals perfekt; nur fiir kurze Zeitspannen
lassen sich vollstindig kontrolliert Ergebnisse gewinnen. Generell kann nur ein geringer Teil der theoretisch moglichen
Zustinde bzw. Observablen pripariert bzw. direkt gemessen werden. Es erfordert daher i.A groen technischen Aufwand
und Erfindungsreichtum der Experimentatoren, theoretische Aussagen der Quantenmechanik tiberpriifbar zu machen, so-
wie oftmals komplexe statistische Methoden fiir den Vergleich der Messergebnisse mit der Theorie.

1.1 Wahrscheinlichkeitsmaf und PVM

Fiir jede Observable X € O ist umkehrbar eindeutig ein projektionswertiges Mall PVM (projection
valued measure) auf den Borelmengen B(RR) der reellen Zahlen R definiert

Py : B(R) = O, A — Px(A),
das jeder Borelmenge A € B(R) einen Projektionsoperator Px (A) € O zuordnet, wobei gilt
PX(Q) - 07PX(R) =1
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sowie fiir jede abzidhlbare Kollektion von paarweise disjunkten Borelmengen {A; € B(R)}ic; mit
Indexmenge [ fiir alle j, k € |

Px(Aj)Px(Ag) = 051 Px (Ay)
Px({JAr) =D Px(A)

kel kel
Fiir alle A, B € B(R) kommutieren daher die zugehorigen Projektoren

[Px(A), Px(B)] =0
und fiir jeden Zustand W € S definiert
Pxw B(R)—)[O, 1], A pX,W(A) = tI'(W Px(A)) (1.2)

ein Wahrscheinlichkeitsmal auf dem Ereignisraum (Messraum) der Borelmengen der reellen Zahlen
(R, B(R)). Fiir den Erwartungswert der Zufallsvariablen X : R — R : # — x im Wahrscheinlich-
keitsraum (R, B(R), px w) gilt dabei

<X>px’w = /xdpxw = /xd(tr(WPX)) = tr(W/deX) =u(WX) =(X),,

Der Projektionsoperator Py (A) ist fiir jedes A € B(R) eine Indikatorobservable (Ja/Nein-Observable)
mit den Eigenwerten o(Px(A)) C {0, 1} und reprisentiert das Ereignis, dass der Wert = der Obser-
vablen X in der Menge A liegt. Statt pp, (4)w ({1}) schreiben wir auch py, (Px (A)).

MI:

Bei der Durchfiihrung von Experimenten wird angenommen, dass die Messung einer Observablen
X € O an einem System im Zustand W € S ein Zufallsexperiment im Sinne der Wahrschein-
lichkeitstheorie darstellt, in dem “zuféllig” eine Zahl z,, € R, der Messwert, ermittelt wird. Der
zugehorige Ereignisraum ist dann (R, B(RR)). Die zentrale Annahme, dass px yw (A) die Wahrschein-
lichkeit fiir das Ereignis, dass das Messergebnis x,, in der Menge A € B(R) liegt, angibt, wird auch
als Bornsche Regel (nach |Born! [1926])) bezeichnet.

Born formulierte diese Regel, um Streuexperimente, wie sie Rutherford durchgefiihrt hatte, quantenmechanisch mittels
Schrodingers Wellenfunktion zu erkldren. In den Experimenten wurden punktformige Teilcheneinschlige gezihlt, wih-
rend die Wellenfunktion ein Wertekontinuum angab. Mit Hilfe der Bornschen Regel konnten daraus die Wahrschein-
lichkeit der Einschlédge, z.B. bei Rutherfords Streuexperimenten [Wentzell |1926] quantenmechanisch berechnet werden;
Rutherfords Formel basierte dagegen noch auf der klassischen Mechanik, die in diesem Fall eine gute Ndherung darstellt.

(R, B(R), px.w) ist der Wahrscheinlichkeitsraum des Zufallsexperiments. Die mdglichen Messwerte
der Observablen X sind durch das Spektrum des Operators (X ) C R gegeben, das fiir beschriankte
Observablen beschrinkt ist. Man kann die Ereignisalgebra und den Wahrscheinlichkeitsraum auch
auf (0(X), B(o(X)), px,w) einschranken.

Die Messung der Observablen wird dabei dahingehend idealisiert, dass Fehler, Ungenauigkeiten, Auflosungsvermogen

und Skalenbegrenzung der Messgerite nicht beriicksichtige werden. Man geht vereinfachend davon aus, dass beliebig
grofle Werte der Observablen, fehlerfrei und beliebig genau gemessen werden.

Hiufig werden in Beispielen diskrete Observablen verwendet, die aus einer orthogonalen Zerlegung der Einheit (ODI,
orthogonal decomposition of identity), d.h. einer abzéhlbaren Menge von paarweise orthogonalen Projektionsoperatoren
{Py € O}ker mit Indexmenge I definiert werden, sodass fiir alle j,k € T

Pij = (5j’]€Pk
S
kel

Mit jeder Funktion f : I — R, k — f(k) = f; kann dann ein PVM definiert werden durch
E:B[R) = P(H),A— P(A)= > P
kef=1(A)
sowie der zugehorige selbstadjungierte Operator durch

F=Y"fiP

kel
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Effekte, unscharfe Observablen und POVMs

“Unscharfe” (verallgemeinerte) Observablen geben die Eigenschaften tatsidchlicher, mit Unsicherheiten behafteter Mes-
sungen besser wieder. In manchen Fillen ist es zudem in der Theorie nicht moglich, geeignete “scharfe” Observablen zur
Beschreibung von Messungen zu definieren. Daher werden in moderneren Darstellungen der QM (vgl. [Ludwig| [1983]],
Busch et al.l [1995| [Nielsen and Chuang| [2000], |de Muynck| [2002]) unscharfe Observablen oftmals an den Anfang ge-
stellt. Ausgangspunkt sind dabei die Effektoperatoren, die eine “unscharfe” Verallgemeinerung der Projektionsoperatoren
bilden. Ein selbstadjungierter Operator E € O(H) ist ein Effektoperator gdw. fiir alle W € S(H)

0<tw(EW) <1

Jeder Projektionsoperator ist auch ein Effektoperator P(H)C £(H). Die Menge der Effektoperatoren auf H wird mit
E(H) bezeichnet, mit £ CE(H) bezeichnen wir die Effekte in O. Jedem Projektionsoperator P € P(H) konnen weitere
Effektoperatoren £ = pP mit 0 < p < 1 zugeordnet werden.

MI:
Der Wert tr(EW) wird als Wahrscheinlichkeit interpretiert, dass bei einer entsprechenden Messung der Effekt E eintritt
(z.B. der Detektor anspricht).

Ist beispielsweise bei einem Teilchen der Projektionsoperator P,y € O die Indikatorobservable fiir ein bestimmtes Raum-
volumen V, so wiirde ein idealer Detektor fiir dieses Volumen fiir jeden Zustand W ansprechen, fiir den tr(W Py ) = 1
gilt. Man interpretiert daher den Zustand W so, dass das Teilchen im Zustand W in dem Volumen V' lokalisiert ist.
Der Effekt Eyy = pPy mit 0 < p < 1 kann dann als Beschreibung eines nicht-idealen Detektors interpretiert wer-
den, der bei einer Messung an einem solchen Zustand W mit der Wahrscheinlichkeit p anspricht, denn es gilt dann
tr(EVW) = tr(vaW) =Dp.

Die Spektraldarstellung eines Effektoperators £ € £ hat die Form

E=) P

kel

mit einer abzéhlbaren Indexmenge I, einer ODI { P}, € @} rer und Koeffizienten py, € Ry mit Y-, cr Pe < 1. Man kann
eine Messung des Effekts I auch als ein “Roulette” interpretieren, bei dem eine dieser Indikatorobservablen Py (mit der
Wahrscheinlichkeit py) gemessen wird.

Jede konvexe Summe einer abzihlbaren Menge von Effektoperatoren {Ey, € €} ey

E= ZpkEk

kel

mit pr, € RTmit ), c7 Pk < 1 definiert wieder einen Effektoperator £ € £.

Eine unscharfe Observable wird mittels eines POVM (positiv operator valued measure) auf einer Ereignisalgebra (Mess-
raum) ({2, A)IZ] definiert,
E:A— & A E(A)

das jedem Ereignis A € A einen Effektoperator E(A) € £ zuordnet, wobei

E(2)=0,E(2) =1

und fiir jede abzihlbare Menge von paarweise disjunkten Borelmengen { Ay € B(R)}rer

E(|JAr) =D E(A)

kel kel

Fiir jeden Zustand W € S definiert daher
PEW : A—)[O, 1], A pE,W(A) = tI'(E(A) W)
ein WahrscheinlichkeitsmaR auf ({2, A).
"meist (2, A) = (R™, B(R"™))




MI:
Ein Beispiel fiir ein POVM geben die unscharfen Ortsmessungen in einem Spurdetektor wie der Wilsonschen Nebel-
kammer. Damit konnen rdumliche Spuren einzelner geladener Teilchen beobachtet werden. Bis heute sind solche Spur-
detektoren (tracking chamber) unterschiedlicher Bauart (Nebel-, Blasen-, Funken-, Draht-, Drift-, ..., -kammer) eine der
wichtigsten Beobachtungsquellen der Elementarteilchenphysi
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Die Nebelkammer kann als ein Detektor betrachtet werden, der nur manchmal - durch die zufilligen Kollisionen eines
Teilchens mit den Molekiilen in der Kammer - anspricht und eine Reihe von zufillig gemessenen Teilchenorten mit
begrenzter Auflosung/Genauigkeit als Nebeltropfchen anzeigt, die dann zur unscharfen Bestimmung der Teilchenbahn
benutzt werden. Die Kriimmung der Bahn in einem dufleren Magnetfeld gibt dabei Auskunft tiber den Impulsbetrag.

Ein weiteres Beispiel fiir ein POVM liefert das Stern-Gerlach-Experiment (s.0.), in dem die beiden Silberstreifen nicht
vollstidndig getrennt sind, sondern sich am Rand lippenartig verbinden, was bedeutet, dass nicht bei jedem Silberatom
eine Spinmessung durchgefiihrt wird - manche Silberatome des Teilchenstrahls bewegen sich auflerhalb des “idealen”

Bereichs.

“Scharfe” Observablen, die durch PVMs bzw. selbstadjungierte Operatoren reprisentiert werden, basieren auf theoreti-
schen Idealisierungen von Messungen, die nicht in allen Fillen moglich sind. Beim Stern-Gerlach-Experiment ist diese
Idealisierung moglich, auch wenn natiirlich jedes tatsdchliche Experiment mit Ungenauigkeiten behaftet ist. Die “un-
scharfe” Messung von Teilchenbahnen in einem Spurdetektor kann dagegen nicht in dieser Weise idealisiert werden: Hei-
senbergs Unschirferelation verbietet die gemeinsame “scharfe” Messung von Ort und Impuls (vgl. Busch et al., [1995).
“Scharfe” Ortsmessungen storen den Teilchenimpuls, sodass bei wiederholten idealen Ortsmessungen als Teilchenspur
nur eine zufillige Zickzackbewegung in Erscheinung treten wiirde.

G. Ludwig hat einen axiomatischen Aufbau der QM formuliert, der von der Beschreibung physikalischer Experimente
mit ungenauen Préparierungen und unscharfen Messungen ausgeht, die schlieBlich mittels statistischer Operatoren und
Effektoperatoren im Hilbertraum dargestellt werden (vgl. [Ludwig| [[1983] [1985albl [1990]), wobei die Idealisierung durch
konventionelle Observablen deutlich gemacht wird.

Ahnlich wie bei den gewohnlichen Observablen werden oftmals diskrete POVMs verwendet, die durch eine abzihlbare
Menge von Effekten { E}, € £}re; (beilde Muynck|[2002] als NODI, non-orthogonal decomposition of identity) definiert
werden, fiir die gilt

> Bi=1

kel
Mit jeder Funktion f : I — A kann dann ein diskretes POVM definiert werden durch

E:A—EMH),A—»EA)= Y E
kef=1(A)

Ein selbstadjungierter Operator ergibt sich in dem Spezialfall, wenn (2, A) = (R, B(R)) und alle Ej, Projektionsopera-
toren sind, sodass E daher ein PVM bzw. {Ej, € £ }1c1 ein ODI (orthogonal decomposition of identity) darstellt.

1.2 Funktionen, Kommutativitit, gemeinsamer Wahrscheinlichkeitsraum und
gemeinsame Messbarkeit

Jede borelmessbare Funktion f : R— R definiert einerseits auf dem Wahrscheinlichkeitsraum (R,
B(R), px w) der Observablen X € O im Zustand W € S eine Zufallsvariable f, andererseits gleich-
zeitig auf dem Hilbertraum A durch die entsprechende Operatorfunktiorﬁ eine weitere Observable

8Diese einfache Moglichkeit, Funktionen von Observablen als Operatorfunktion zu behandeln, zeichnet die scharfen
Observablen aus.



f(X) € O. Fiir den Erwartungswert von f(X) im Zustand W gilt dann

Py = [ £ sy = (£ W) = (OO

Trivialerweise gibt es daher fiir die Observablen X und f(X) einen gemeinsamen Wahrscheinlich-
keitsraum, in dem beide als Zufallsvariablen betrachtet werden konnen. Fiir das Wahrscheinlichkeits-
maB pyx)w gilt fiir alle A € B(R)

preow(A) =pxw(f(A))

und entsprechend fiir das zugehorige PVM
Pyix)(A) = Px(f71(4))

Gibt es fiir zwei Observablen X, Y eine dritte Observable Z und borelmessbare Funktionen f, g
sodass X = f(Z)und Y = ¢(Z), dann gibt es fiir jeden Zustand auch einen gemeinsamen Wahr-
scheinlichkeitsraum. Fiir paarweise kommutierende Observablen ist dies immer der Fall.

Der Grund wird durch ein Theorem von v. Neumann aufgezeigt (vgl. |v. Neumann| [[1932]], [Varadarajan|[[1968])): Zu jeder
Familie von selbstadjungierten Operatoren { X, € D(H)}rer, die paarweise kommutieren, gibt es einen selbstadjungier-
ten Operator X € D(H) und eine Familie von borelmessbaren reellen Funktionen { f, € R®} .7, sodass fiir alle k € T
gilt Xj, = fi(X). Fir alle Zustdnde W € S ist dann (R, B(R), px,w) der gemeinsame Wahrscheinlichkeitsraum, in dem
die Observablen X, durch die Zufallsvariablen fk reprasentiert werden.

MI:

Wird im Experiment bei einer Messung von X der Wert x;; € R gemessen, so wird implizit gleichzei-
tig fiir die Observable f(X') der Wert f(x,,) gemessen . Sind also zwei Observablen X, Y Funktionen
einer dritten Observable Z mit X = f(Z) und Y = ¢(Z), so konnen sie prinzipiell gemeinsam in

einem Einzelexperiment gemessen werden: Jede Messung von Z ist gleichzeitig auch eine Messung
von X und Y.

Aufgrund des zitierten Theorems von v. Neumann gilt daher: Kommutierende Observablen konnen in
einem Einzelexperiment gemeinsam gemessen werden.

Fiir nicht-kommutierende Observablen kann i. A. kein gemeinsamer Wahrscheinlichkeitsraum ange-
geben werden. Dies ist ein fundamentaler Unterschied zur klassischen statistischen Mechanik, in der
alle Observablen Funktionen auf dem Phasenraum sind und somit jeder Zustand einen gemeinsamen
Wahrscheinlichkeitsraum fiir alle Observablen konstituiert.

In der QM gibt es schon das Problem, dass Funktionen nicht kommutierender Observablen, d.h. selbstadjungierter Ope-
ratoren, i. A. keinen selbstadjungierten Operator, d.h. keine Observable, ergeben (z.B. f(X,Y) = XY). Betrachtet man
nur Linearkombinationen, so sind diese, zumindest fiir beschrinkte Observablen, wohldefiniert. Fiir reelle Zufallsvariablen

X,Y : Q — R auf einem Wahrscheinlichkeitsraum (2, A, p), ist jede reelle Linearkombination aX + bY mit a,b € R
ebenfalls eine Zufallsvariable, deren Erwartungswert die entsprechende Linearkombination der Erwartungswerte ist

(aX +bY) =a(X)+b(Y)
Zwar gilt letzteres auch fiir jeden Zustand W € S und alle beschrinkten Observablen X, Y &€ (5, denn es gilt dann
tr((aX +0Y)W) = atr(XW) 4+ btr(YW)

aber ein gemeinsamer Wahrscheinlichkeitsraum ist trotzdem nicht immer méglich. Wenn X, Y nicht kommutieren, gibt
es Zustinde, in denen die Wahrscheinlichkeitsverteilungen fiir Linearkombinationen der Observablen nicht denen von
Zufallsvariablen entsprechen. Varadarajan! [1962] und |[Nelson| [1967] haben gezeigt, dass ein gemeinsa-
mer Wahrscheinlichkeitsraum fiir Observablen X, Y € O und alle ihre reellen Linearkombinationen
aX + bY mit a,b € R nur dann fiir alle Zustinde W& S angegeben werden kann, wenn X und Y
kommutieren.



MI:
Nicht-kommutierende Observablen konnen in einem Einzelexperiment i.A. nicht gemeinsam gemessen

werden.

Diese Aussage bezieht sich nur auf ideale, exakte Messungen. Unscharfe gemeinsame Messungen sind mdéglich, wie die
quasi-klassischen Teilchenbahnen in einem Spurdetektor zeigen, bei denen die nicht-kommutierenden Observablen Ort
und Impuls des Teilchen nédherungsweise gemessen werden; Heisenbergs Unschirferelation [[1927] gibt aber Grenzen fiir
diese Messungen vor.

Die Nichtexistenz eines gemeinsamen Wahrscheinlichkeitsraumes kann als theoretisches Argument
gegen die gleichzeitige exakte Messbarkeit verstanden werden: Denn selbst, wenn es moglich ist,
in einem Einzelexperiment gleichzeitig Messwerte fiir nicht-kommutierende Observablen zu gewin-
nen, muss es Zustdnde geben, in denen die in Versuchsreihen gewonnenen relativen Héaufigkeiten fiir
die Messwerte der Observablen und ihrer Linearkombinationen nicht die von der QM vorgegebenen
WahrscheinlichkeitsmaBe approximieren, da relative Haufigkeiten im Experiment immer ein gemein-
sames Wahrscheinlichkeitsmafl auf dem Produktraum der Messergebnisse konstituieren.

Ein gemeinsamer Wahrscheinlichkeitsraum ist die Voraussetzung dafiir, dass man wahrscheinlich-
keitstheoretische Begriffe wie bedingte Wahrscheinlichkeit, Korrelation, Kovarianz, ... anwenden
kann.

Gemeinsam messbare Effekte und POVMs

Dass fiir eine gemeinsame Messung fiir jeden Zustand ein gemeinsamer Wahrscheinlichkeitsraum gegeben sein muss,
liefert auch die Definition der gemeinsamen Messbarkeit von unscharfen Observablen. Im Gegensatz zu den Projektoren
eines PVMs miissen die Effekte, die zu einem POVM E : A — &(H) gehoren, nicht paarweise kommutieren. Man
bezeichnet eine Menge von Effekten {E} }rer als koexistent bzw. gemeinsam messbar, wenn ein Ereignisraum (£2,.4)
und ein POVM E : A — E(H) existiert, zu dem diese Effekte als Bild gehéren {Ey}rer € E(A). Damit konstituiert
jeder Zustand W € S einen gemeinsamen Wahrscheinlichkeitsraum (2, A, pg w).

Kommutieren alle Effekte eines POVM E : B(R) — £(#H), B — E(B) paarweise, so gibt es einen selbstadjungierten
Operator X € O(H), sodass alle Effekte mit borelmessbaren Funktionen fp : R — R als Funktionen dieses Operators
dargestellt werden kénnen E(B) = fp(X) . Man bezeichnet E dann als Verschmierung (smearing) des Operators X .

Zwei POVMs E, F' sind gemeinsam messbar, wenn ein POVM G existiert, das die beiden POVMs als Marginalien enthilt.
Fir NODIs {E; € E&(H)};{Fr € E(H)}i bedeutet das: es gibt ein NODI {G; € E(H)},, mit E; = >, G
und F, = > y G k. Fiir jeden Zustand definiert dann G einen gemeinsamen Wahrscheinlichkeitsraum, in dem E, F'
Marginalverteilungen definieren.

1.3 Mischungen und reine Zustinde

Fiir eine abzihlbare Menge von Dichteoperatoren {W, € S}c; ist jede konvexe Summeﬂ
W= Zpk Wi
kel

mit p,, € R* und ), _, p,, = 1 ebenfalls ein Dichteoperator W' € S. Man bezeichnet den Zustand W
auch als Mischung aus den Komponenten W), mit den statistischen Gewichten p;.. Befindet sich das
System im Zustand W, so gilt fiir alle Observablen X € O

<X>W =tr(X W)= Zpktr(X Wi) = Zpk<X>Wk

Ein Zustand W € § ist rein, wenn er nicht als Mischung verschiedener Komponenten darstellbar ist.
Ein Zustand W € § ist genau dann rein, wenn

W2 =W

9Fiir abzihlbar unendliche Mengen konvergiert die Summe bzgl. der Operatornorm in £(H).
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Dies ist genau dann der Fall, wenn W ein Projektionsoperator auf einen eindimensionalen Teilraum
von H ist. Mit jeden Einheitsvektor 1) (H@b” = 1) aus diesem Teilraum (d.h. W = ¢y und W = Py))
gilt fiir alle Observablen X € O

(X W) = (¢, X¢)
Man bezeichnet 1 als Zustandsvektor.
Viele Darstellungen der QM verzichten auf Mischungen und behandeln ausschlieBlich reine Zustén-

de, die jeweils durch einen Zustandsvektor 1) € H beschrieben werden. Der Erwartungswert einer
Observablen X € O wird dann mit Hilfe des Skalarprodukts berechnet

Jeder statistische Operator W e S kann als Mischung von reinen Zustinden dargestellt werden, d.h.
es gibt eine abzdhlbare Menge von Vektoren {1y, € H }xe;, sodass

W= Z PrPlyy)
kel

wobei alle p,, > 0, Y, ., pr = 1 und Py, der Projektionsoperator auf den vom Zustandsvektor 1,
aufgespannten eindimensionalen Teilraum [¢;] sind. Dann gilt

(XD = (X W) =" pe(thn, Xeow) = Y pi (X)),

Die Vektoren {1, € H}rc; miissen dabei nicht paarweise orthogonal sein. Dabei ist jedoch zu be-

achten, dass die Komponenten P, ) durch die Mischung W i.A. nicht eindeutig bestimmt sind und

verschiedene reine Zustdnde die gleiche Mischung ergeben konnen.

Sind z.B. 9, ¢ € H zwei orthogonale Zustandsvektoren mit <1/J, <p> = 0, so ergibt die Mischung %PM + %PM exakt
. o e . . . 1 1 . .

den gleichen statistischen Operator wie die Mischung 5P L (6+¢)] + 35 ) der orthogonalen reinen Zustinde

%(1/1 + ¢) und %W — ¢) . Das gleiche gilt fiir 3 Py + $ P + %P[%(w-so)] + %P[%(w—so)] .

MI:

Im Experiment hiingt die Priparierung des Zustands i.A. von gewissen Kontrollparametern (z.B. Ent-
fernungen, Beschleunigerspannung, Temperatur) ab, die man “zufillig” variieren kann, um auf diese
Weise Mischungen zu priparieren. Da sich gewisse zufillige Schwankungen dieser Parameter in ei-
ner statistischen Versuchsreihe nicht vermeiden lassen, ist aber davon auszugehen, dass in der experi-
mentellen Realitdt immer solche Mischungen pripariert werden und reine Zustinde eher idealisierte
Grenzfille darstellen.

Ist der Zustand des Systems durch eine Mischung W = >, _, pj. Py, aus reinen Zustidnden 1, 1), ...
gegeben, so wird das manchmal so interpretiert, dass sich das System (in jedem Einzelexperiment)
tatsidchlich (mit der Wahrscheinlichkeit py) in einem der reinen Zustidnde ), befindet. Nun gibt es
sicher Szenarien, in denen dies der Fall ist: z.B. wenn die Mischung in einer Apparatur aus reinen
Zustianden erzeugt wird, bei der ein Experimentator durch Nachmessen der Kontrollparameter den
Zustand genau bestimmen kann.

I. A. konnen aber solche Vorstellungen aufgrund der Uneindeutigkeit der Komponentenzerlegung zu
Widerspriichen fiithren. Ballentine| [ 1998]] diskutiert (S. 239 ff.) beispielsweise den Fall eines Elektro-
nenbeschleunigers: Der gleiche Zustand eines préparierten Elektrons kann dort sowohl als Mischung
von Wellenpaketen als auch als Mischung ebener Wellen dargestellt werden.

1.4 Entropie des Zustands

Mischungen entsprechen klassischen Wahrscheinlichkeitsverteilungen reiner Zustédnde, wie man auch anhand der von v.
Neumann eingefiihrten Entropie des Zustands We S

S:8 = RI, Wi S(W) = —kptr(W log(W))
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sehen kann, wobei kp die Boltzmannkonstante kennzeichnet. Schreibt man den Zustand W als Mischung von paarweise
orthogonalen reinen Zustinden W = )7, px Py, ), so gilt

S(W) = kg Y _ pilog(ps)
k

In einem reinen Zustand hat die Entropie den Wert 0. Man kann daher reine Zusténde als Zustdnde minimaler “Unbe-
stimmtheit” auffassen. Fiir eine Mischung aus n orthogonalen reinen Zusténden ist die Entropie maximal, wenn alle das
gleiche statistische Gewicht py, = % haben; der Wert Entropie ist dann kg log(n).

MI:

Die genaue Kontrolle der Apparatur zur Priparierung des Systems dient der Minimierung der Entropie des Zustandes. Im
Idealfall ist das Priparierverfahren so exakt, dass ein reiner Zustand mit der Entropie 0 prapariert wird.

In der Quanteninformatik verwendet man iiblicherweise eine Definition, die sich um einen konstanten Faktor unterscheidet
S(W) = —te(W logy(W))

Fiir n Qubits (H = (Czn) ist die maximale Entropie dann n, was gerade einer Information von n Bit entspricht.

1.5 Streuungsfreiheit und Eigenzustinde

Ist der Erwartungswert <A>W = a einer Observablen A € O in einem Zustand W e S streuungsfrei,
d.h. gilt fiir die Wurzel des Erwartungswertes der Varianz V = (A —al)? € O

o= (V) = (A= a1)?),, =0

so bezeichnet man W als Eigenzustand™|der Observablen A zum Eigenwert a.

Fiir jede borelmessbare Funktion f : R — R ist ein Eigenzustand W& S der Observablen A € O mit
dem Eigenwert @ auch ein Eigenzustand der Observablen f(A) zum Eigenwert f(a).

MI:

Im Experiment bedeutet die Praparierung eines solchen Eigenzustands I in einer Versuchsreihe, dass
bei jeder Messung der Observablen A mit Sicherheit der Wert a (und damit auch fiir jede Funktion
f(A) der Wert f(a)) gemessen wird.

Dies kann man so interpretieren, dass die Observable A in diesem Fall jedes mal auch ohne Messung
den Wert a hat (vgl. Dirac,|1958, S.46 ), was dem iiblichen Vorgehen in Experimenten entspricht: z.B.
justiert man einen Teilchenstrahl mit Kontrollmessungen, um Teilchen mit einem bestimmten Impuls
zu praparieren. Nach dieser Vorbereitung, wird der Teilchenstrahl verwendet, um Streuexperimente
durchzufiihren. Dabei wird angenommen, dass alle prédparierten Teilchen den festgelegten Impuls
haben (vgl. Compton-Simon-Experiment, s.u.).

Ein Zustand W e § ist genau dann Eigenzustand der Observablen A € O zum Eigenwert a € R,
wenn gilt

AW = aW
Denn aus AW = aW folgt tr(AW) = atr(W) = a und tr((A — al)?W) = u((A — a)(AW — aW)) = 0. Fiir die
umgekehrte Richtung betrachtet man W als Mischung reiner Zustinde W = 3, pr Py, ). Ist der Erwartungswert a von
A streuungsfrei, so muss er fiir jede Komponente P, ; der Mischung streuungsfrei sein. Aus 0 = <1/)k, (A - a1)21/)k>

folgt dann ((A — al)ty, (A — al)yy) = 0 und (A — al)iy, = 0. Alle ¥y, sind also Eigenvektoren von A zum Eigenwert
a, woraus sich fiir die Mischung AW = W A = aW ergibt.

Ist der Eigenzustand W rein, so ist der zugehdrige Zustandsvektor 1 ein Eigenvektor des Operators
A, dh. Ay = a1p. Andernfalls kann der Eigenzustand W als Mischung von Eigenvektoren zum
Eigenwert a dargestellt werden.

100ftmals wird diese Definition auf reine Zustinde eingeschriinkt. Wir folgen|Weinberg [2014].
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1.6 Streuungsfreie Zustinde und Unbestimmtheitsrelation

In der klassischen statistischen Mechanik sind fiir Punktmafle (Diracmal3e) auf dem Phasenraum alle
Observablen streuungsfrei. Im Gegensatz dazu gibt es in der Quantenmechanik keine solchen streu-
ungsfreien Zustinde W e S.

Ist ¢ € H ein reiner Zustand des Systems, so stellt der Projektionsoperator L (V)] auf einen Vektor % (¥ + ) mit

einem zu 1) orthogonalen Einheitsvektor ¢ € H eine Observable dar, deren Streuung im Zustand 1) nicht verschwindet.
Eine Mischung wiederum kann bzgl. einer Observablen nur dann streuungsfrei sein, wenn alle reinen Zustinde, die als
Komponenten der Mischung auftreten, streuungsfrei sind.

Ein weiteres Beispiel liefert die Heisenbergsche Unbestimmtheitsrelatio [Heisenberg, 1927], die
fiir die Streuungen o x, op von Ort und Impuls X, P € O eines Teilchens in einem beliebigen Zustand
W € S die folgende Beziehung angibt

h
oxop > > (1.3)

wobei oy = \/<(X —z1)?),,,0p = V(P - p1)?),, und i = 1,05... x 10~*'Js (das Plancksche
Wirkungsquantum dividiert durch 27). Je geringer die Streuung des Ortes fiir einen Zustand W € S
ist, desto grofer ist also die Streuung des Impulses im gleichen Zustand und umgekehr@ Dies ist nur
fiir nicht-kommutierende Observablen moglich (vgl. Abs. 1.2).

MI:

In dieser Form macht die Unbestimmtheitsrelation keine Aussage liber Messgenauigkeiten, sondern
iber die “Schirfe” der Wahrscheinlichkeitsverteilungen der Messergebnisse. Im Experiment kdnnen
an einem priparierten Zustand W (z.B. an einem Teilchenbeschleuniger) in zwei Versuchsreihen ei-
nerseits wiederholt der Ort X, andererseits wiederholt der Impuls P eines Teilchens beliebig genau
gemessen werden. Die Unbestimmtheitsrelation macht dann lediglich eine Aussage iiber die Streu-
ungen, deren Werte in der Versuchsreihe durch die mittlere quadratische Abweichung der Messwerte
vom Mittelwert ermittelt werden konnen.

Es gibt aber gewisse Zusammenhinge mit den bei einer gemeinsamen Messung in einem Einzelexperiment erreichbaren
Messgenauigkeiten d x, d p, die von[Heisenberg|[[1927]] ebenfalls behandelt und in einer entsprechenden Unschdirferelation
dxdp > const - h zum Ausdruck gebracht wurden. Diese prinzipielle Einschrinkung der Messgenauigkeit wurde dort
von Heisenberg als Grund des quantenmechanischen Indeterminismus dargestellt (vgl. auch |v. Neumann, [1932) und nur
exemplarisch aufgezeigt. Heute wird diese Relation aus der Theorie der unscharfen Observablen gefolgert (vgl. Busch
et al., |2007). Das Beispiel der Wilsonschen Nebelkammer (bzw. aller Spurdetektoren) wurde schon angefiihrt. Diese
erlaubt die gemeinsame unscharfe Messung von Ort und Impuls, wobei die Unschirferelation die Messgenauigkeit von
Orts- und Impulsmessung begrenzt.

2 Dynamik: Transformationen, Hamiltonoperator und Bewegungs-
gleichungen

Ist T C R ein Zeitintervall oder eine Menge von diskreten Zeitpunkten, an denen die Entwicklung
des Systems betrachtet wird, so wird einem quantenmechanischen System fiir jeden Zeitpunkt ¢ € T
ein Zustand W (t) € S zugeschrieben

W:T— S, t— W(t)

“Heisenberg [1930] spricht von Unbestimmtheitsrelation, Heisenberg|[[1927]], [Pauli| [1933] auch von Unsicherheitsre-
lation.
12 Aus dieser Relation folgt auch, dass es keine echten Eigenzustinde fiir den Ort bzw. den Impuls geben kann.
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Fiir ein geschlossenes”’| System (bzgl. offener Systeme s. Abs. ist die Funktion W (¢) durch einen
Anfangszustand W (0) und eine Menge unitérer Transformationen {U; € L(H)}+ver des Hilber-
traums H definiert, wobei fiir alle Zeitpunkte ¢, ', " € T gilt

W (') = U W (U], 2.1)

Ut,t/Ut/,t” = Ut,t”
Ut,t - 1
— -t
Ut/,t - Ut,t' - Ut,t’

Ein geschlossenes System ist isoliert (abgeschlossen), wenn mit T = R die zeitliche Entwicklung nur
von der Zeitdifferenz und nicht vom absoluten Zeitpunkt abhzngt, d.h. es gilt fiir alle s, ¢, € R

Ut,t—i—s - Ut’,t’+s = UO,s

und diese Abhédngigkeit in der Normtopologie stetig ist
limHUO,t-l-S - Uo,t” =0
s—0

Diese Transformationen bilden dann eine kommutative Gruppe {Us; € L(H)}ser, bei der fiir alle
s,t € R gilt

Uy=1
UsUt = UtUs = Us+t
U, =Ul =0

2.1 Kommutativitit und Hamiltonoperator

Fiir ein isoliertes System folgt danrﬂ dass es einen selbstadjungierten Operator H € O(#H) gibt, mit
dem fiir alle ¢ € R[] gilt

U = exp(—%tH)

Man bezeichnet H als Hamiltonoperator.

Fiir geschlossene Systeme sind im allgemeinen Fall die Transformationen {U; ;v € L(H)} e nicht kommutativ. Man
kann dennoch fiir kompakte T bei entsprechenden Stetigkeitsannahmen fiir kleine Zeitintervalle At schreiben

1
Ut,t-‘,—At ~ exp(—ﬁAt Ht) (22)

mit zeitabhéingigen Hamiltonoperatoren Hy, wobei i.A.[Hy, Hy] # 0 fir ¢ # ¢/ gilt.

Héufig betrachtet man Systeme, deren Hamiltonoperator zwar insgesamt zeitabhéngig, aber fiir gewisse Zeitintervalle
konstant ist. In der Quanteninformatik behandelt man diskrete Folgen von (i.A. nicht-kommutierenden) unitidren Trans-
formationen eines n-Qubit-Systems (H = (C2n) als “Maschinenprogramme” eines Quantencomputers, wobei jede unitire
Transformation fiir eine einzelne Operation steht.

BWir folgen in der Terminologie bzgl. offen (open), geschlossen (closed) und isoliert (isolated) Breuer and Petruccione
[2002].

“nach dem Satz von Stone

5In Gegensatz zu den folgenden Differentialgleichungen ist die Formulierung der Dynamik mittels unitirer Trans-
formationen insofern mathematisch unproblematisch, dass die zugehorigen unitdren Transformationen auch fiir unbe-
schrinkte Hamiltonoperatoren im ganzen Hilbertraum definiert sind.
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MI:

Die Messung der Zeitabhingigkeit der Zusténde erfordert die Ermittlung der Startzeit der Einzelex-
perimente und der Zeit, zu der eine Messung erfolgt.

Bei Teilchenbeschleunigern kann z.B. zum Zeitpunkt ¢ ein Verschluss gedffnet und an dem Teilchen-
strahl in (entsprechender Entfernung) zum Zeitpunkt ¢ < ¢’ eine Messung vorgenommen werden. In
Drahtkammerdetektoren ergibt sich eine individuelle Teilchenspur durch elektrische Impulse, die an
den Drihten automatisiert gemessen werden und dadurch die zeitliche Festlegung der einzelnen Orts-
messungen an einer Teilchenspur ermdglichen. Auf diese Weise kann auch die Geschwindigkeit der
Teilchen ndherungsweise ermittelt werden.

2.2 Determinismus und Reversibilitit

Der zeitliche Verlauf der Zustinde eines geschlossenen Systems ist deterministisch und reversibe
Dies folgt aus der Bijektivitit der unitidren Transformationen in (2.1J).

2.3 v. Neumannsche Bewegungsgleichung

Durch Differenzieren von W (t) = U07tW(O)Ug,t erhdlt man, wie in |l angedeutet, die v. Neumann-
schen Bewegungsgleichung

d i i
ZW() = 2 (WO H, — H W (1) = 2 [W(0), H

wobei H, ein zeitabhdngiger Hamiltonoperator ist. Bei isolierten Systemen ist H; = H zeitlich kon-
stant.

Diese Gleichung entspricht der Liouville-Gleichung der klassischen statistischen Mechanik und wird
deshalb auch manchmal als v. Neumann-Liouville-Gleichung bezeichnet.

2.4 Reine Zustinde und abstrakte Schrodingergleichung

Ist das System zum Zeitpunkt ¢ = 0 in einem reinen Zustand W (0) = W (0)?, so ist der Zustand
Wi(t) = Uoth(O)Ug,t = ontW(O)U&tUO,tW(O)U&t = W (t)? fiir alle Zeiten ¢ rein und man kann die
zeitliche Entwicklung des Zustands auch mittels Zustandsvektoren beschreiben

ViR = H = Y(t) = Upap(0)
Durch Differenzieren erhilt man dann die abstrakte Schrodingergleichung
1

d
Ewt) = —ﬁHt@ZJ(t)

Da es sich um eine lineare Differentialgleichung handelt, ist mit den Losungen 1y (), ¢5(t) auch jede
Linearkombination a; (t) + by (t) mit a,b € C eine Losung, wobei die Bedingung ‘a|2 + ‘6‘2 =1
fiir die Normierung sorgt.

Ist W (0) eine Mischung aus den reinen Zustinden vy, d.h. W (0) = 3, pp Py, ), so gilt fiiralle ¢t € R

W(t) = UU,tW(O)U(J)f,t = Uoy (Z pkp[lbk]) U(;r,t = ZpkUO,tPWk]Ug,t = Zka[Uo,td)k]
k k k

16Wir verstehen “reversibel” hier im logischen Sinn, d.h. zu jedem Endzustand gehort genau ein Anfangszustand.
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2.5 Entropie- und Energieerhaltung, Erhaltungsgrofien, stationire Zustinde

Da unitédre Transformationen Mischungen von reinen Zustinden in Mischungen von reinen Zustinden
tiberfithren, ohne dass sich die statistischen Gewichte dndern, bleibt die Entropie fiir geschlossene
Systeme zeitlich konstant. Es gilt fiir alle t € R

SW(t) =Y pkPugew) = —ks Y _ prlog(p) = S(W(0))

Betrachtet man die Zeitabhingigkeit des Erwartungswertes einer Observablen X € O bei einem
isolierten System

(XY, = u(X W (1)) = (X UW(O)U}) = tr(X exp(—%tH)W(O) exp(%tH))

so erkennt man, dass, wenn X mit dem Hamiltonoperator kommutiert, d.h. [H, X| = 0, fiir alle
Zeitpunkte ¢ € R gilt

(X), = tr(exp(%tH) exp(—%tH)X W(0)) = (X W(0)) = (X)),

X ist dann eine Erhaltungsgrofe. Dies gilt auch fiir alle Funktionen f(.X), da dann [H, f(X)] = 0.
Insbesondere bleibt der Erwartungswert der Energie eines isolierten Systems, die durch den zeitlich
konstanten Hamiltonoperator A dargestellt wird, erhalten.

Hat dieser Hamiltonoperator Eigenwerte, so ergeben die zugehorigen reinen Eigenzustinde

H@n = €nPn

stationdre Losungen der Schrodingergleichung

Uut) = exp(— 1 eat)n

in denen die Energie streuungsfrei den Wert e,, und alle Observablen X € O zeitlich konstante
Erwartungswerte haben

<¢n(t>}Xwn<t>> = <‘Pn‘XS0n> = <¢n<0)‘Xwn(0>>

Letzteres gilt natiirlich auch fiir alle Mischungen dieser Zustéinde, weshalb diese zur Beschreibung von thermodyna-
mischen Gleichgewichtszustinden verwendet werden z.B. fiir ein kanonisches Ensemble (System im Gleichgewicht mit
einem Wirmebad der absoluten Temperatur 1)

1 en 1 H
W =Y puPy, = Zr Zexp(*m)})[wn] =7 eXP(*kBiT)

wobei kp die Boltzmann-Konstante darstellt und iiber alle Basisvektoren ¢,, einer Orthonormalbasis von Eigenvektoren
von H{ summiert wird. Der Normierungsfaktor Zr wird als Zustandssumme bezeichnet.

Bei der Untersuchung physikalischer Systeme spielt die Ermittlung des Energiespektrums o(H ) sowie der zugehorigen
Eigenvektoren eine zentrale Rolle. Historisch war das Spektrum des Hamiltonoperators des Wasserstoffatoms von ent-
scheidender Bedeutung, das die Energieniveaus des Bohrschen Atommodells wiedergibt (vgl. Schrodinger, |1926a)). Das
Spektrum des Hamiltonoperators ist in der Regel von unten beschrinkt: 3eg € R : Ve € o(H) : ¢y < e. Ist die untere
Grenze e durch einen Eigenwert gegeben, so bezeichnet man jeden zugehdorigen stationdren Zustand (minimaler Ener-
gie) 1o als Grundzustand des Systems, alle anderen Zustidnde als angeregt. Zustandsiiberginge zwischen den stationdren
Zustanden finden nur bei dullerer Wechselwirkung z.B. mit dem elektromagnetischen Feld statt.
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2.6 Schrodingerbild, Heisenbergbild, Heisenbergsche Bewegungsgleichung

Bisher wurde ausschlieBlich das Schrodingerbild behandelt, in dem die Zustinde zeitabhingig, die Observablen dagegen
konstant sind. Betrachtet man die Zeitabhingigkeit der Erwartungswerte

(X), = e(X W(t)) = tr(X Up,oW (0)U )
so kann man durch eine kleine Umformung zum Heisenbergbild gelangen
(X), = (U] . X Up oW (0)) = tr(Xp (t) W)
in dem alle Observablen als zeitabhéngig
Xp:R— Ot Xy(t)=U/ X Upo
betrachtet werden, der Zustand des Systems
Wy = W(0)

dagegen als konstant. Die Zeitabhingigkeit der Observablen wird dann durch die Heisenbergsche Bewegungsgleichung

bestimmt J ] 9
(3
%XH(t) =5 [H(t), Xu(t)] + aXH(t) (2.3)

wobei der letzte Term nur fiir explizit (d.h. auch im Schrodingerbild) zeitabhingige Operatoren (wie H;) von Null ver-
schieden ist.

3 Komposition: Zustinde, Observablen und Dynamik der Teil-
systeme

Ist ein System aus den unterscheidbaren Teilsystemen mit den zugeordneten Hilbertraumen H 4, Hp
zusammengesetzt, so wird ihm als Hilbertraum das Tensorprodukt H =H 4 ® Hp zugeordnet, wobei
die Observablen der Teilsysteme X4 € O4 C O(H ,),Xp € OpC O(Hy) in H durch die
tensoriellen Produktoperatoren X, ® 1,1 ® Xp € OC O(H) dargestellt werden.

3.1 Produktzustinde, stochastische Abhéngigkeit, Verschrinkung

Observablen verschiedener Teilsysteme zB. X ® 1,1 ®@ Y mit X € O(H,), Y € O(Hy) kom-
mutieren trivialerweise. Es gibt daher fiir jeden Zustand W € S(H4 ® Hp) des Gesamtsystems
einen gemeinsamen Wahrscheinlichkeitsraum (R?, B(R?), pxy.w ), in dem diese Observablen als Zu-
fallsvariablen dargestellt werden konnen. Mit den PVMs Py : B(R) — O(H;),A — Px(A),
Py : B(R) — O(H2), B — Px(B) ist das entsprechende Wahrscheinlichkeitsmaf} definiert durch
die Fortsetzung von

Pxyw : B(R)2—>[O, 1],A X B — pr’W(A X B) = tI'(Px(A> X Py(B) W)

auf B(R?). Fiir Produktzustinde Wy @ W4 € S(Ha @ Hp) mit Wy € S(Ha),Wa € S(H) gilt
dabei

pxywaewa (A X B) = tw((Px(A)Wa) @ (Py(B)Wg)) =
tr(Px(A)Wa) - tt(Py (B)Wg) = px.w,(A) - pywy(B)

Pxy,w.ew, 1St daher das Produktmal} der WahrscheinlichkeitsmaBe px w,, py,w, der Einzelsysteme,
d.h. fiir Produktzustinde sind die Wahrscheinlichkeitsverteilungen von Observablen unterschiedlicher
Teilsysteme stochastisch unabhdngig.
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Ist ein Zustand W € S(H 4 ® Hp) ein Produktzustand der Form W = W, @ Wy, mit W4 € S(H.)
und Wi € S(Hp) oder eine Mischung solcher Produktzustinde W = ), pWy4 ) ® Wpy, mit
War € S(Ha), W € S(Hp) und pp € RT, bezeichnet man ihn als separabel, andernfalls als
verschrdinkt.

Einige Beispiele (mit 14, pa € Ha; g, o € HpWa = %P[m] + %P[@A], Wg = %P[wB] + §P[¢B])

verschrinkt

Zustandin H4 Q Hp
YA R Yp

w \[w®w3+\f@®¢3

Pm} ® Pyg) + P[m ® Plog]
Wa ® Blyp) = 5Pwa © P[wgﬁ Pl @ Pyg) | V

<|| Produkt

<< <_|| separabel

<

Nur verschrinkte Zustinde ermoglichen “nicht-lokale” Quanteneffekte wie die Verletzung der Bell-
CHSH-Ungleichung (vgl. Kapitel “Die Bell-CHSH-Ungleichung und Bells Theorem™) durch nicht-
klassische Korrelationen.

3.2 Zustand der Teilsysteme und partielle Spur

Fiir jeden Zustand W € S(Ha ® Hp) ist der Erwartungswert einer Observablen des Teilsystems
X € O(H,) gegeben durch”|
<X> =tu(W(X ®1))

Es gibt aber zu jedem Zustand W € S(Ha ® Hp) einen Zustand Wes (Ha), sodass fiir alle
Observablen X € O(H ,) gilt
(X) =u(WX)

Der Operator w ergibt sich durch partielle Spurbildung aus dem Operator 1/, es gilt

W = tI'HB (W)

Man bezeichnet W auch als auf das Teilsystem A reduzierten Zustand. Fiir einen Produktzustand
W =Wr@Wgist W = W,4.
Fiir die Entropie des Zustands W € S(H 4 ® Hp) gilt mit Wy = try , (W) und Wp = tryg , (W)
S(W) < S(Wa) + S(Ws)
wobei fiir Produktzustinde die Gleichheit gilt.

Fiir einen reinen Zustand des Gesamtsystems ¢ € H4 ® Hp gilt: Der reduzierte Zustand W =
try,, (Py) ist genau dann rein, wenn ) ein Produktzustand ist, d.h. ¢ = ¥4 ® ¥ mit 4 € Ha,
Yp € Hp. Fiir verschrinkte reine Zustinde des Gesamtsystems gibt es also keinen reinen Zustand
des Teilsystems, der die korrekten Erwartungswerte fiir die Teilsystemobservablen lieferl{];g]

Beispiele wie oben (mit 14, o4 € Ha; ¥, o5 € Hp;Wa = PW,A}—F Py, Wp = P¢31+ P

7Wir beschriinken und im Folgenden auf das Teilsystem A. Alle Ergebnisse gelten natiirlich auch entsprechend fiir
Teilsystem B.
8Dies zeigt auch, dass die Beschreibung quantenmechanischer Systeme durch reine Zustinde nicht ausreicht.

16



| Zustand in H4 @ Hp | reduzierter Zustand in H 4 |
s ®Yp YA

)= \/gw ® Y5 + /304 @ o5 Wa = 5Py + 3 Poa

W = 3Piyu] ® Pyl + 5P ® Pigp) Wa = 5Py, + D]

Wa ® Pryp) = 5Py ® Pl +5Pioal © Pus) | Wa = 5B + 5 Plou)

Die Beispiele in der Tabelle zeigen auch, wie problematisch die Annahme ist, bei jedem System, das als Mischung
reiner Zustinde beschrieben wird, liege im Einzelexperiment in Wahrheit einer der Komponentenzusténde vor - mit der
entsprechenden Wahrscheinlichkeit, die dann rein epistemisch zu interpretieren wére. Die Mischung W4 ist der auf das
Teilsystem A reduzierte Zustand sowohl von 1) als auch von W. Die genannte Annahme ist aber nur mit dem Zustand W
vertriglich: Denn mit dem “wahren” Zustand 1) 4 von Teilsystem A ist nur der “wahre” Zustand des Gesamtsystems 14 ®
1 moglich, der eine Komponente der Mischung W ist, aber nicht des reinen Zustands ). Manche Autoren unterscheiden
daher auch zwei Arten von Mischungen: Mischungen, die eine solche epistemische Interpretation zulassen (Gemenge,
mixture of states, proper mixtures) und Mischungen, bei denen dies nicht der Fall ist (vgl. Mittelstaedt, [1998)).

3.3 Wechselwirkung und Verschrinkung

Ist ein abgeschlossenes Gesamtsystem aus zwei Teilsystemen mit den Hilbertraumen H 4, H p zZusammengesetzt, so be-
steht keine Wechselwirkung zwischen den Teilsystemen, wenn die Dynamik des Gesamtsystem im Hilbertraum H 4 ® Hp
durch eine unitére Transformation U; € U(H 4 ® H ) beschrieben werden kann, die als Produkt von unitidren Transfor-
mation der Teilsysteme dargestellt werden kann, d.h. es gibt Uy 4 € U(H ), Uy, € U(H ), sodass

U =Upa®@Up
mit Uy 4 = e~ #H4 und U, p = e~ #*#5_Dann gilt fiir alle Produktzustéinde ¢4 (0) ® 1p(0) € Ha @ Hp

Ur(¥4(0) @ ¢5(0)) = (Ur.a @ U, B) (¢ 4(0)@¢5(0)) = $a(t) @ ¢p(t)
Differenzieren liefert dann die Schrodingergleichung des Gesamtsystems

1

F(Ha®1p+14@ Hp)pa(t) @ ¥p(t)

d
P (Va(t) ® ¥p(t) =
mit dem Hamiltonoperator
H=Hs®1lp+14® Hp

Wenn die Teilsysteme nicht wechselwirken, werden Produktzustinde in Produktzustinde iiberfiihrt und separable Zu-
stdnde bleiben separabel. Die Energie der Teilsysteme bleibt zeitlich konstant, genauso wie die Gesamtenergie. Dies én-
dert sich, wenn Wechselwirkung stattfindet. Wechselwirkende Systeme konnen Energie austauschen und Verschriankung
produzieren. Die Zeitentwicklung eines Gesamtsystems U; € U(Ha ® Hp) lésst sich beim Vorliegen einer Wechsel-
wirkung zwischen den Teilsystemen nicht mehr als Produkttransformation schreiben, d.h. es gibt keine U; 4 € U(H ),
Ui,p € U(Hp), sodass Uy = U, 4 @ Uy p. Es folgt: Es gibt Produktzustinde, die durch die Transformation in verschrink-
te Zustidnde iiberfithrt werden, andernfalls konnte man eine Produkttransformation angeben. Der Hamiltonoperator des
Gesamtsystems H € O(H 4 ® Hp) ldsst sich dann als Summe schreiben

H=H s®1p+14® Hg + Hw

wobei Hy = H — Hy ® 1p — 14 ® Hp € O(Ha ® Hp) per Definition die Wechselwirkung beschreibt. Die Energie
der Teilsysteme ist dann i.A. keine Erhaltungsgrofie. Es kann zwischen den Teilsystemen Energie ausgetauscht werden,
die Gesamtenergie bleibt dabei erhalten.

3.4 Offene Systeme

Die Untersuchung offener Quantensysteme spielt eine wichtige Rolle. Eine Grundidee bei der theo-
retischen Behandlung ist es, das Gesamtsystem aus Umgebung, die mit dem Hilbertraum H be-
schrieben wird, und offenem System # im Hilbertraum H &® H zu betrachten, und aus der unitdren
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Dynamik {U, v € L(H®Hy)}+.ver des Gesamtsystems mit einem Anfangszustand Wy € S(HQH)
und partieller Spurbildung eine Beschreibung des offenen Systems alleine zu gewinnen

Wi R— S(H), t = W(t) = try, (Up,WoUS,) (3.1)

Durch die Wechselwirkung eines offenen Quantensystems mit der Umgebung werden in der Regel
reine Zustinde in Mischungen iiberfiihrt, ein Vorgang, den man auch als Dekohdirenz bezeichnet.

Nimmt man an, dass der Anfangszustand ein Produktzustand Wy = W (0) ® Wy ist, so ldsst sich W (¢) fiir jedes ¢ > 0 in
der Form schreiben
W(t) =" Bi(t)W(0)BL(t)
k

mit Kraus-Operatoren By (t) € L(H), fir die gilt

> Bi)B(t) =1
k
Die Abbildung
T, : S(H) = S(H),W = T,(W) = > Bp(t)WB(t) (3.2)
k

beschreibt diese Dynamik (Man spricht von einer “quantum dynamical map”). Diese Abbildung ist i.A. nicht injektiv, die
dadurch beschriebene Dynamik des Systems also irreversibel. Die Abbildung 7} kann auf den Vektorraum der Operatoren
der Spurklasse N (Hg) C L(Hs) erweitert werden und ist dann linear, spurerhaltend und iiberfiihrt positive Operatoren
in Positive] ”|Nimmt man weiterhin an, dass sich die Umgebung in einem Gleichgewichtszustand befindet, der durch die
Wechselwirkung mit dem System nicht gestort wird, sowie die zeitliche Translationsinvarianz dieser Wechselwirkung, so
bilden die Transformationen T} eine kommutative Halbgruppe mit 1-Element, es gilt dann

Tt—&-s = ﬂTs

fiir alle s, > 0. Man spricht von einer dynamischen Halbgruppe (quantum dynamical semigroup). Als Bewegungsglei-
chung (master-equation) kann in diesem Fall die Lindblad-Gleichung angegeben werden

d / R 1 1
ZW(H) =+ [W(),H + ; (AL W (DAL = SAALW () = 5 W () AcA]) (33)

Dabei sind fiir £ = 1,...N? — 1 die 4 > 0 reelle Konstanten und die Operatoren Ay € L£(#). Der erste Summand auf der
rechten Seite gibt die unitidre Bewegung nach der v. Neumann-Gleichung mit dem Hamiltonoperator H an, der allerdings
Zusatzterme gegeniiber dem Hamiltonoperator des isolierten Systems enthalten kann, die Einwirkungen der Umgebung
beschreiben. Die restlichen Summanden beschreiben dissipative Effekte, die die Irreversibilitit der Dynamik in S(H)
ermoglichen. Genaueres findet sich z.B. in [Breuer and Petruccionel 2002].

4 Partikel: Ort, Impuls und Spin

Ein Teilchen ist ein System, dem ein Ortsvektor im 3-dimensionalen Raum zugeordnet ist, in kar-
tesischen Koordinaten durch die Observablen X,Y,Z € O, sowie der zugehorige Impulsvektor,
in kartesischen Koordinaten die Observablen P,, P,, P, € O, wobei die Heisenbergschen Vertau-
schungsrelationen gelte

X.P] =[Y.P) = [Z.P] =il

[X7Y]:[X’Z]:[Yaz]:[Xva]Z[XaPz]:[KPz]:O

YYolistindig positive, spurerhaltende Abbildungen (completely positive trace preserving CPTP maps) sind die Grund-
lage fiir die allgemeine Behandlung von Quantenoperationen mit offenen Systemen. Vollstindige Positivitét ist dabei
gleichbedeutend mit der Existenz der angegebenen Kraus-Operatoren.

2'Die Relation [X, P,] = ih1 ist in dieser Form durch lineare Operatoren im Hilbertraum mathematisch nicht erfiillbar
(vgl.|Kadison and Liul 2014). Sie kann nur fiir nicht-iiberall definierte, unbeschrinkte Operatoren insoweit erfiillt werden,
dass sie fiir eine dichte Teilmenge des Hilbertraum (etwa die Schwartzschen Testfunktionen in £2(R™)) gilt, die in den
Definitionsbereichen der beteiligten Operatoren enthalten ist. Eine mathematisch korrekte Formulierung wire dann: Es
gibt eine in H dicht-liegende Teilmenge D C D(X) ND(Py), sodass fiir alle ¢ € D gilt X (P,p) — Py(Xp) = ihp
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4.1 Heisenbergsche Vertauschungsrelationen und Hamiltonoperator

Bei der Behandlung konkreter quantenmechanischer Systeme muss der Hilbertraum H zusammen
mit der Menge der Observablen O angegeben werden. Beides leisten die Heisenbergrelationen fiir ein
Teilchen: Die Observablen sind durch algebraische Verkniipfungen von Orts- und Impulsoperatoren
gegeben, die Hilbertraumdarstellung dagegen durch £?(R3) implizit vorgegeben |v. Neumannl| [1931]).
Aus den Vertauschungsrelationen folgt

—1[X", Py] = nX"

h

— (X, Pp) = npPp!

und damit fiir Polynome (oder in der passenden Darstellung differenzierbare Funktionen) f

i of

—[f(X),P,] = =L
i of

— X, f(P,)] = =%
RSP =

Damit stehen die Vertauschungsrelationen in einem engen Zusammenhang mit der klassischen Poissonklammer. Histo-
risch standen Heisenbergschen Vertauschungsrelationen am Anfang der Quantenmechanik{ﬂ Die grundlegenden Obser-
vablen wurden dabei zunéchst in ihrer Matrixform behandelt.

Fiir die Begriinder der QM waren die physikalischen Groen durch die klassische Physik vorgegeben. Energie, Masse, Im-
puls, Ladung waren durch klassische Theorien definiert und wurden mit Hilfe klassischer Instrumente gemessen, bevor es
die QM gab. Die experimentell bestitigte Annahme, dass die Erhaltungssitze fiir diese Grofen auch fiir Quantensysteme
gelten, ermoglichte bilanzierende Messungen.

Die in den frithen Experimenten auftretenden Elektronen, Alphateilchen, Atome und Atomkerne wurden zunichst als
Massepunkte der klassischen Mechanik behandelt - ein in der Makrophysik iiberaus erfolgreiches Konzept mit dem sowohl
die Bewegung des Massenmittelpunkts eines Planeten als auch die eines fallenden Apfels auf der Erde beschrieben werden
konnte, das aber grundsitzlich in der Mikrophysik scheiterte und nur in manchen Fillen gute Nidherungen lieferte.

In der Hamiltonschen Form der klassischen Mechanik sind die Basisgrofien Orts- und Impulskoordinaten, die Dynamik
wird durch die Hamiltonfunktion bestimmt, wobei die Bewegungsgleichungen mit Hilfe der Poissonklammern ausge-
driickt werden konnen (vgl. Kapitel “Klassische statistische Mechanik™). Heisenbergs Vertauschungsrelationen und der
Hamiltonoperator definieren in der QM ein “korrespondierendes” Konzept fiir Teilche

Gruppentheoretische Methoden helfen, die Zusammenhénge zu verstehen. Die rdumlichen und zeitlichen Symmetrien des
Systems definieren eine Gruppe von Transformationen (z.B. Verschiebungen, Drehungen, Spiegelungen), deren unitére
Darstellung im Hilbertraum als Generatoren die grundlegenden ObservableIFEI und ihre Vertauschungsrelationen defi-
nier Diese Symmetrien bilden ein gemeinsames Fundament zwischen klassischer Mechanik und QM.

Der fiir Beschreibung der Dynamik isolierter Systeme notwendige Hamiltonoperator hat fiir elemen-
tare Teilchensysteme oft die gleiche Form wie die Hamiltonfunktion der klassischen Mechanik, z.B.
fiir ein Teilchen der Masse m in einem Kraftfeld, das durch eine Potentialfunktion V : R® — R

gegeben ist
1 1
H=—P'+V=—(PP+P:+PH+V(X,Y,Z 4.1
2m + 2m( T + y + Z) + ( ’ Y ) ( )
wobei man mitunter auch geschlossene Systeme mit zeitabhingiger Potentialfunktion V' betrachtet.

Fiir ein isoliertes System ist das Potential zeitlich konstant, fiir ein freies Teilchen ist es iiberall 0.

Aus den Vertauschungsrelationen folgt mit diesem Hamiltonoperator

H,x] = Lo (4.2)
m
oV
[H, P,] = X (4.3)

2limplizit in Heisenbergs Pionierarbeit [1925], explizit in der Ausarbeitung der Matrizenmechanik von Born und Jordan
[1925]

“*Auch Felder konnen in der Quantenfeldtheorie mit Hilfe von Vertauschungsrelationen fiir die Feldstirke- und die
zugehorigen Impulsobservablen an jedem Raumpunkt eingefiihrt werden (kanonische Quantisierung).

23Bei der Einfiihrung des Hamiltonoperators im Abschnitt Dynamik haben wir diese Methode skizziert.

24Eine elementare Darstellung dieser Zusammenhiinge gibt z.B. Ballentine|[1998]
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4.2 Wellenmechanik und Schrodingergleichung

Schrodinger fiihrte in seiner Wellenmechanik Schrodinger [[1926alb.cid] implizit den Hilbertraum der
Wellenfunktionen £?(R?) zur Darstellung der reinen Zustinde eines Teilchens und Multiplikations-
bzw. Differentialoperatoren auf diesem Raum zur Darstellung der Observablen ein:

= Y(z,y,2)
le — T ¢(337ya Z)
0
Man erkannte schnell, dass Schrodingers Differentialoperatoren algebraisch isomorph zu den Matri-

zen von Heisenberg, Born und Jordan waren. So folgt z.B. fiir den Kommutator zwischen X und P,
fiir jede differenzierbare Funktion v

(XP,— P.X)yY = —iﬁx%w + iﬁ%(xw) = —iﬁx%¢ + i) + iﬁx%w =il
d.h. die Heisenbergsche Vertauschungsrelation ist erfiillt. v. Neumann deckte die Hilbertraumstruktur
[1927]] der Quanten-/Wellenmechanik auf und zeigte [1931], dass alle anderen Darstellungen der
Heisenbergschen Vertauschungsrelationen durch selbstadjungierte Operatoren im Hilbertraum unitér-
dquivalent zu der Schrodingerschen sind.

In der Dynamik betrachtet man zeitabhéngige Wellenfunktionen

U(t) = ¢(x,y,2,1)
Aus der abstrakten Schrodingergleichung

d i
S(t) =~ HY()

ergibt sich dann mit (4.1) die partielle Differentialgleichung, die Schrodinger [[1926d] aufgestellt hat.
Fiir ein Teilchen im zeitlich konstanten Potential V' lautet diese zeitabhdiingige Schrodingergleichung
dann

iﬁ%@/}(r,t) = (—;—mVQ + V(r)> Y(r,t)

wobei 1 = (z,y,2), V = (&, a%v 2) und V? = (88—;2 + 50—;2 + (,;9—;) zur abkiirzenden vektoriellen
Schreibweise verwendeten werden. Das Betragsquadrat der Wellenfunktion kann als Wahrscheinlich-

keitsdichte der Ortsobservablen interpretiert werden

p(’l“, t) = |2/}(’I", t)

d.h. das Integral von p iiber ein Volumen ergibt die Wahrscheinlichkeit fiir einen Teilchenort innerhalb
dieses Volumens.

‘ 2

4.3 Kontinuititsgleichung
Aus der zeitabhingigen Schrodingergleichung folgt dann die sogenannte Kontinuitdtsgleichung
%p(r,t) +Vj(r,t)=0

mit der vektoriellen Stromdichte
](’I’,t) = % (%Z}(Tvt)vﬁf (’I’,t) 71# (Tat)V7/’(T'at))

die ein Ausdruck der Teilchen- bzw. Wahrscheinlichkeitserhaltung ist. Sie gilt daher mit anderen Definitionen von p, 3
auch in der klassischen statistischen Mechanik eines Massepunkts.
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4.4 Freies Teilchen und GauBlsche Wellenpakete

Fiir ein freies TeilcherE] (Potential V' = 0 ) reduziert sich der Hamiltonoperator zu

1
H=_—P?
2m

Fiir eine Raumdimension (Hilbertraum H = £*(R)) lautet die zeitabhingige Schrodingergleichung

0 h* o?
Zﬁal/}(%t) = —%@WIJ)

Losungen sind eindimensionale Wellen
bla,t) = aektrEz

mit a € C, die allerdings nicht quadratintegrabel und daher auch keine Elemente des Hilbertraums
L*(R) sind. Diese Wellen sind Eigenfunktionen fiir den Impuls p mit der Energie ¢ = ﬁpQ und
erfiillen die von Einstein fiir Licht- und von de Broglie fiir Materiewellen postulierten Beziehungen
fiir Frequenz v (“nii”

e = hv

und Wellenlinge A
h
P=X
mit h = 27h.

Beliebige Linearkombinationen dieser Wellen sind ebenfalls Losungen der Schrodingergleichung wie
z. B. Gaufische Wellenpakete

1
\V2mh

1 _ (p*z;%) ;
a — e 4oj 67 7PZo
(p) B,

die quadratintegrabel und daher auch Elemente des Hilbertraums £?(RR) sind. Ein solches Wellenpa-
ket liefert sowohl fiir den Impuls als auch fiir den Ort Wahrscheinlichkeitsverteilungen in Form von
Gauflschen Normalverteilungen

. 2
(1) = / a(p)er P Edp

mit

—(p—p2)2
1 =

pp.1) = @) = Zo=e ¥

P

P 2
1 )

2
xr,t) = r,t)| = —e 2027 4.4)

plant) = o)l = o=
wobei sich die Ortsverteilung im Gegensatz zu Impulsverteilung mit der Zeit andert. Erwartungswert
und Streuung des Impulses sind py und o,,. Der Erwartungswert des Teilchenortes zum Zeitpunkt ¢ ist

Do

<X>t :xo_l_at

ZWie in der klassischen Mechanik kann auch in der QM die Bewegung des Massenmittelpunkts (Schwerpunkts) eines
abgeschlossenen Mehrteilchensystems ohne externe Felder wie ein einzelnes freies Teilchen beschrieben werden.
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Solche GauBschen Wellenpakete entsprechen der Bewegung freier Teilchen in der klassischen Mecha-
nik: Der Erwartungswert <X > , bewegt sich gleichformig mit der Geschwindigkeit py/m. Die Streu-
ung wichst allerdings mit der Zeit, sodass die Verteilung “zerflie3t”.

h 4ot
t)=— —L 42
UX< ) 20 P m2h?
Ist die Streuung des Wellenpakets klein, dann ist die Wahrscheinlichkeit fiir einen Teilchenort in der
Nihe des Erwartungswertes grof3, sodass sich mit hoher Wahrscheinlichkeit quasi-klassische Bahnen

fiir einzelne Teilchen ergeben, z.B.

pex([(X), — 30x(t), (X), + 30x(t)]) = 0,997

Zum Zeitpunkt ¢ = 0 gilt 0,(0) = 5= . Dies ist untere Grenze fiir o,, , wenn man o,, als gegeben

annimmt und die Unbestimmtheitsrelation (1.3) beriicksichtigt. Man kann damit auch schreiben

O'X<t) :Ux(()) 1—|—

Der gleiche Ausdruck ergibt sich in der klassischen statistischen Mechanik fiir eine Gauf3sche Nor-
malverteilung im Phasenraum, die sich nach der Liouville-Gleichung bewegt. Die Marginalverteilung
der Orte folgt dabei ebenfalls (4.4), die Marginalverteilung der Impulse bleibt zeitlich konstant (vgl.
Volovich/2009). Im Gegensatz zur QM sind aber beliebig kleine Streuungen ox und op moglich.

Die Geschwindigkeit des ZerflieBens der Verteilung ist allerdings grundsitzlich zwischen Elementarteilchen und makro-

skopischen Partikeln hochst unterschiedlich. Bei jeweils minimaler Impulsstreuung cp = ﬁh(o) gilt :

e Ein Elektron mit der Masse m = 9.1 - 10~3'kg und der Anfangsstreuung des Ortes 0,(0) = 0.1nm = 1071%m
(etwa ein Atomdurchmesser) verdoppelt o, in der Zeit t = 2,99 * 10~ 16s. .

e Ein kleines Sandkorn (Durchmesser 0.1 mm) mit der Masse m = lug = 10~%kg und der Anfangsstreuung
0.(0) = 1um = 10~%m (1% vom Durchmesser) verdoppelt o in der “astronomischen” Zeitspanne ¢ = 3, 28 x
10%%s ~ 10%.

MI: Eine mogliche Pripariervorrichtung zur experimentellen Uberpriifung der quantenmechanischen Beschreibung ma-
kroskopischer Systeme ist z.B. ein Gewehr, die Kugeln sind die zu untersuchenden Systeme. In Abhingigkeit von Zielrich-
tung und Art der Munition (sowie einiger anderer Parameter wie Temperatur etc.) wird der Zustand einer Kugel prépariert,
wenn man das Gewehr abfeuert. Zielscheiben konnen als Detektor verwendet werden. Die Verteilung der Einschiisse gibt
Aufschluss iiber den priparierten Zustand.

Fiir diese Experimente gibt es keinen gravierenden Unterschied zwischen klassischer und quantenmechanischer Beschrei-
bung: Letztere verwendet eine Mischung aus Gauf3schen Wellenpaketen, erstere Gaulsche Normalverteilungen im Pha-
senraum, die sich nach der Liouvillegleichung bewegen. Beide Beschreibungen liefern fiir die Verteilung der Aufschla-
gorte die gleichen Resultate. Der theoretische Grenzfall fiir die maximal erreichbare Prizision der Versuchsapparatur ist
allerdings unterschiedlich: In der QM wird dann der Massenmittelpunkt der Kugel durch ein GauB3sches Wellenpaket
mit minimaler Orts-/Impulsstreuung, wie von der Unbestimmtheitsrelation vorgeben, beschrieben. In der KM wiirde ein
Punktmal} verwendet, das sich auf einer klassischen Bahn bewegt. In der Praxis sind diese Grenzfille unerreichbar.
Dennoch sind bei einem “guten” Gewehr die Streuungen klein genug, sodass fiir eine praktische Anwendung die gradli-
nige Bahn iiber “Kimme und Korn” als Beschreibung ausreicht. Diese Beschreibung ist deterministisch und ermoglicht
es, das Gewehr als zuverlidssiges Werkzeug z.B. fiir die Jagd zu verwenden. Sowohl im Vergleich zur quantenmechani-
schen als auch zur klassisch-statischen Beschreibung liegt eine Vereinfachung vor, die nur eine Teilmenge der Ereignisse
behandelt, die mit einer Wahrscheinlichkeit nahe bei 1 eintreten.

Die quantenmechanische Beschreibung beinhaltet Zustinde und Observablen, die in Experimenten mit Gewehrkugeln
nicht prapariert bzw. gemessen werden konnen - zumindest bisher. Dank des technischen Fortschritt konnten immerhin
bei der Bewegung grofler Molekiile mit einer Masse von mehr als 6000 Wasserstoffatomen quantenmechanische Interfe-
renzeffekte im Experiment nachgewiesen werden (s. Abschn.[4.7). Vielleicht ist dies eines Tages auch mit Gewehrkugeln
moglich.
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4.5 Ehrenfest-Theorem, klassischer Grenzfall und Dekohéirenz

Der Erwartungswert bewegt sich nicht nur bei GauB3schen Wellenpaketen fiir freie Teilchen auf einer
klassischen Bahn. In Abhingigkeit vom Potential und der Form des Wellenfunktion gibt es auch in
anderen Fillen eine mehr oder weniger exakte Ubereinstimmung mit der klassischen Teilchenbahn.

Aus der Heisenbergschen Bewegungsgleichung (2.3)) kann sehr einfach durch Erwartungswertbildung
die Ehrenfestsche Gleichung gewonnen werden

d i 0A
(A, = 2, AD, + (50,

die die zeitliche Entwicklung des Erwartungswertes einer beliebigen Observablen A € O angibt und
deshalb natiirlich auch im Schrédingerbild gilt. Mit dem zeitlich konstanten Hamiltonoperator H =
LmP2 + V folgt, wenn V' nur von den Ortskoordinaten abhéngt, fiir den Erwartungswert des Ortes
2X > , eines Teilchens in einer Raumdimension aus den Heisenbergschen Vertauschungsrelationen mit

4.2) y
m%@( >t - <P > t
was der klassischen Beziehung p = ma entspricht. Weiterhin folgt mit (4.3))

d? ov
m@<X>t - _<%>t

Diese Ehrenfestsche Gleichung kann man als Newtonsche Bewegungsgleichung fiir einen Masse-
punkt interpretieren, der sich zu jedem Zeitpunkt ¢ € R am quantenmechanischen Erwartungswert
des Ortes (X) , befindet, wenn —(92) , die Kraft angibt, die auf diesen wirkt. Dies erfordert aller-
dings, wenn klassisches und quantenmechanisches System mit dem gleichen Potential beschrieben

werden, dass fiir alle t € R
ov ov

XNy = (==
(X)) = (50,
Dies ist aber dann der Fall, wenn das Potential V' ein héchstens quadratisches Polynom der Ortskoor-
dinaten ist. Mit V(z) = a + bz + cz? mit a, b, ¢ € R gilt dann ndmlich fiir jeden Zustand W € S

<88_Z>W - <b+ 2CX>W =b+ 2C<X>W - 88_‘1/’(<X>W)

d.h. der Erwartungswert des Teilchenorts bewegt sich fiir jeden Anfangszustand exakt auf der klassi-
schen Bahn. Beispiele sind freie Teilchen, Teilchen in einem homogenen Kraftfeld oder der harmoni-
schen Oszillator.

Aber auch fiir Potentiale V, die diese Bedingung nicht erfiillen, kann die Bewegung des Erwartungs-
wertes des Teilchenorts fiir eine gewisse Zeitspanne (Ehrenfestzeit) ndherungsweise auf klassischen
Bahnen verlaufen, solange ndmlich ndherungsweise gilt

oV oV
%«X%) ~ <%>t

Dies ist bei hinreichend kleinen Wellenpaketen der Fall, wenn innerhalb eines Volumens, fiir das die
Aufenthaltswahrscheinlichkeit des Teilchens nahe bei 1 liegt, das Potential “gut” durch ein quadra-
tisches Polynom approximiert werden kann. Dies gilt zum Beispiel im Zentralfeld, wenn ein kleines
Wellenpaket weit genug vom Zentrum entfernt ist (Planeten- bzw. Satellitenorbits, freier Fall an der
Erdoberfliche). Das mogliche ZerflieBen des Wellenpakets ldsst allerdings diese Ndherung im Lauf
der Zeit immer schlechter werden, wobei dhnlich wie bei den oben behandelten freien Teilchen diese
Zeitspanne bei makroskopischen Korpern astronomisch grof3 sein kann.
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Klassischer Grenzfall Punktmechanik

Betrachtet man die QM als universelle Theorie, die auch makroskopische Korper beschreibt, so sollte
deren Beschreibung mittels der klassischen Mechanik eine gute Niherung an die umfassendere und
genauere Beschreibung durch die QM darstellen. Auch wenn es viele Einzelresultate gibt, die diese
Ansicht stiitzen, fehlt bisher doch eine allgemein akzeptierte, liickenlose und umfassende Darstellung
dieses klassischen Grenzfalls (s. Landsman, 2005)).

Der Ehrenfestsche Satz und die Ehrenfestsche Gleichung bilden eine wichtige Briicke zur klassischen
Mechanik. Sind die oben aufgefiihrten Bedingungen erfiillt, so beschreibt die klassische Punktmecha-
nik die Bewegung des Massenmittelpunkts eines makroskopischen Korpers genauso wie die QM die
Bewegung des quantenmechanischen Erwartungswerts des Teilchenorts. Fiir Wellenpakete mit hin-
reichend kleiner Streuung liefern dann beide Theorien praktisch, d.h. mit den makroskopisch erreich-
baren Messgenauigkeiten, die gleichen Vorhersagen fiir Ort und Impuls des Teilchens - zumindest in
experimentell tiberpriitbaren Zeitspannen.

Auch in der klassischen statistischen Mechanik gilt der Ehrenfest-Satz fiir den Erwartungswert des Ortes [Ballentinel
1998]]. Wie in der QM folgt der Erwartungswert des Ortes der Bahn eines Massepunkts, wenn das Potential hochstens
q_uadratisch von den Ortskoordinaten abhiingt. Wiebe and Ballentine| [2005] haben darauf hingewiesen, dass dabei die
Ubereinstimmung noch weiter gehen kann: Auch in Fillen, in denen sich der Erwartungswert in beiden Theorien nicht auf

der Bahn eines Massepunkts bewegt, konnen Wahrscheinlichkeitsverteilungen und Erwartungswerte fiir Ort und Impuls
zwischen QM und der klassischen statistischen Mechanik iibereinstimmen (vgl. auch Hajicekl 2015).

Dekohirenz

Wenn man Wellenpakete als quantenmechanische Grundlage der klassischen Beschreibung der Mas-
senmittelpunktsbewegung makroskopischer Korper betrachtet, stellt sich natiirlich die Frage, warum
in der makroskopischen Natur nur solche Zustinde beobachtet werden. Eine Antwort auf diese Frage
gibt die Dekohdirenztheorie: Es ist praktisch unmdoglich, einen makroskopischen Korper von der Um-
gebung zu isolieren. Selbst im Ultrahochvakuum oder der Heliossphire im interplanetaren Raum gibt
es mehr als 10 massive Teilchen pro cm?, die mit einem makroskopischen Korper kollidieren, hinzu
kommen die Photonen der elektromagnetischen Strahlung. Je grofer das Korpervolumen um so hoher
ist die Kollisionsrate. Die theoretische Behandlung als offenes System zeigt dann, dass alle Wellen-
funktionen eines Teilchens innerhalb einer kurzen Zeitspanne (Dekohdirenzzeit) in Mischungen aus
“scharf™ lokalisierten Wellenpaketen iibergehen, die sich jeweils auf quasi-klassischen Bahnen bewe-
gen (vgl. Schlosshauer|2004, sowie Eisert/[2004, Qureshi 2012@

MI: Dieser Effekt wurde im Prinzip schon in der Friihzeit der QM beobachtet und analysiert (vgl. Mott, |1929 und Hei-
senberg), |1930). Die Theorie des Alpha-Zerfalls ergibt fiir ein vom radioaktiven Kern emittiertes Alphateilchen eine Wel-
lenfunktion in Form einer auslaufenden Kugelwelle. In der Wilsonschen Nebelkammer werden aber mehr oder weniger
gradlinige Teilchenspuren in radialer Richtung beobachtet, wie das Bild zeigt.

Die unkontrollierte Wechselwirkung des Alphateilchens mit der Wasserdampf-Umgebung fiihrt zu Dekohérenz: Die Ku-
gelwelle, die das isolierte Alphateilchen beschreibt, geht (durch partielle Spurbildung am Gesamtsystem Alphateilchen-
Wasserdampf) in eine Mischung aus Wellenpaketen iiber, die sich gradlinig in radialer Richtungen fortbewegen (vgl.
Figari and Teta [2012,2014]).

%Diese Antwort der Dekohiirenztheorie ist allerdings nicht unumstritten (vgl. Ballentine[2008).
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Ahnlich wie schon in Abschn. skizziert, kann der Massenmittelpunkt eines Teilchens in einer solchen Umgebung als
offenes System durch eine Lindblad-Gleichung beschrieben werden, fiir die (Joos et al.l 2003, S. 70) in einer Raumdi-
mension folgende Form angeben

d 1

SW(B) = £ W (), H] + ALX, [X, W(0)]

wobei A eine von der GroB3e des Teilchens abhidngige Dekohirenzrate darstellt. Mit dem Hamiltonoperator H = ﬁ P2+V
des isolierten Teilchens gelten selbst in diesem Fall fiir die Bewegung der Erwartungswerte von Ort und Impuls die

Ehrenfestschen Gleichungen (Joos et al., 2003} S. 88)

d
m%<X>t = (P),
d ov
a\Ph =G0

sodass alle Uberlegungen aus Abschnitt zur Anwendung kommen konnen.

4.6 Harmonischer Oszillator

Auch wenn der Hamiltonoperator des eindimensionalen harmonischen Oszillators

Help2y My

- 2m 2
mit V(X) = mT“’zX 2 und reellen Konstanten m, w > 0 die Bedingungen des Ehrenfesttheorems exakt erfiillt und der
Erwartungswert des Ortes sich daher fiir alle Losungen der Schrodingergleichung auf einer klassischen Bahn bewegt, gibt
es doch eine fundamentale Abweichung zur klassischen Mechanik: die moglichen Energiewerte sind “gequantelt”. Die
zeitabhingige Schrodingergleichung

L 0 oo mw?
lﬁaﬂ’(%t) = (maxg + T > Y(w,t)

wird gelost durch '
i
"/’n(xv t) = eXp(ﬁent)(Pn (3;‘)
wobei ¢, fiir n = 0, 1, ... Eigenfunktionen des Hamiltonoperators zum Eigenwert e,, € R sind. Sie haben die Form

pn(x) = cnexp(—%ﬁ)hn( ym)

2h h
wobei h,, die hermiteschen Polynome ho(y) = 1,h1(y) = 2y, ha(y) = 4y?> — 2, ... und ¢, € R Normierungsfaktoren
darstellen. Die zugehorigen Eigenwerte sind gerade
1

en = hw(n + 5)

Im Gegensatz zur klassischen Mechanik ist die minimale Energie also nicht 0 sondern %‘“ Der Grundzustand 1) ist ein

Gauf3sches Wellenpaket. Fiir alle 1/,, ruht der Erwartungswert des Ortes im Ursprungspunkt, d.h. fiir alle ¢ gilt <X > , =0
und <P> , = 0. Superpositionen der Eigenfunktionen des Hamiltonoperators der Form

o o
ela) = exp(=5) 3 men(@)

mit beliebigem ¢ = |c| e’ € C mit ¢ # 0, bezeichnet man als kohdrente Zustinde. Bei den zugehorigen Losungen der
zeitabhingigen Schrodingergleichung

. _ o)? & e
Xe(z,t) = exp( 7);m

vollfithren die Erwartungswerte fiir Ort und Impuls eine klassische Schwingungsbewegung

U (x,t)

<X>t = a|c| cos(wt — @), <P>t = amw sin(wt — @)
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UX(t):\/E,UP(t): m?médx(t)ap(t):g

Diese Zustinde beschreiben also Wellenpakete minimaler Unschirfe fiir Ort und Impuls, die sich auf klassischen Bahnen
bewegen und nicht im Lauf der Zeit zerflieB3en.

mit der Amplitude a = % |c| und der Frequenz v = wobei fiir die Streuungen gilt

4.7 Wellen und Interferenzen

Eine weitere Abweichung zur klassischen statistischen Mechanik ergibt sich durch das mogliche Auf-
treten von Interferenzen, die es bei klassischen Wahrscheinlichkeitsverteilungen fiir Teilchen nicht
gibt. In der klassischen Physik kennt man Interferenzen nur von Wellen, sie treten z.B. beim Doppel-
spaltexperiment aufE]

Das folgende Bild zeigt diese Effekte fiir ein GauB8sches Wellenpaket (links) und eine entsprechende
klassische GauBsche Normalverteilung (rechts) im Phasenraum, wenn beide mit relativ “scharfem”
Impul@ den Doppelspalt passieren und in einer gewissen Entfernung auf einen Detektionsschirm
treffen.

Aufgetragen ist die Wahrscheinlichkeitsdichte fiir das Auftreffen des Teilchens in dem entsprechen-
den Bereich des Schirms. Das entstehende Interferenzmuster kann man mit Hilfe klassischer Wellen
erklidren, wenn man deren Wellenlinge mittels der Beziehung von de Broglie aus dem Impuls berech-
net A = % (s. “freies Teilchen”) und die Wahrscheinlichkeitsdichte als Betragsquadrat der Schwin-
gungsamplitude deutet.

Im Formalismus der QM héngt das Auftreten der Interferenzen mit den Additionsregeln fiir Wahr-
scheinlichkeiten zusammen (vgl. Feynman et al., [1965). Fiir ein freies Teilchen bewegt sich die klas-
sische Wahrscheinlichkeitsverteilung fiir den Ort des Teilchen vor dem Spalt dhnlich wie die Quan-
tenmechanische. Am Doppelspalt dndert sich das.

Im klassischen Fall bilden sich nach dem Doppelspalt zwei Teilverteilungen py (7, p, t), po(r, p, t) im
Phasenraum heraus, die sich teilweise iiberlappen. Fiir die Wahrscheinlichkeit des Teilchenorts zur
Zeit t in einem kleinen Raumbereich A hinter dem Doppelspalt gilt dann

P(A, 1) = / La(pr(ry py )+ pa(r,p, £))dT = / Laps(rop, )T+ / Lapa(r,p, )T = py (A, £)+ps(A, 1)

wobei [ die Indikatorfunktion fiir den Raumbereich A und p;(A,t) = [ Lapi(r,p,t)dl, pa(A,t) =
[ Lapa(r, p,t)dl" die entsprechenden Wahrscheinlichkeiten angeben, dass das Teilchen durch den je-
weiligen Spalt gegangen ist und sich dann in A befindet. Die Teilverteilungen p; (7, p,t), po(r, p, t)
konnen auch zur Beschreibung des Systems verwendet werden, wenn jeweils ein Spalt geschlossen
ist.

2"Historisch war bekanntlich Young’s Doppelspaltexperiment mit Licht von 1806 mit ausschlaggebend fiir die Akzep-
tanz der Wellentheorie des Lichts (anstelle von Newton’s Teilchentheorie), die dann ca. 100 Jahr spiter durch Einsteins
Theorie der Lichtquanten wieder revidiert wurde.

2d.h. entsprechend groBer Streuung des Ortes
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In der QM teilt sich das entsprechende GauB3sche Wellenpaket hinter dem Doppelspalt ebenso in
zwei Teilwellenfunktionen ¢y (r,t), 12(r, t), die zur Gesamtwellenfunktion addiert werden. Fiir die
Wabhrscheinlichkeit gilt dann aber

pa.0) = [ Lafonto) + vt ofav = [fufav+ [ Ljelav+ [ Lere@sav -

P1 <A7 t) + pQ(A> t) + 7;1,2<A7 t)

d.h. zu den Wahrscheinlichkeiten p; (A4,¢) = [, |11 (r, ¢) |2dV, p2(At) = [, |va(r,t) ‘2dV wird noch
ein Interferenzterm iy 2( A, t) addiert, der negativ sein kann. Dies hat zur Folge, dass die Wahrschein-
lichkeit p(A,t) auch Null sein kann, wenn beide Teilwellenpakete eine positive Wahrscheinlichkeit
ergeben, d.h. p; (A, ¢) > 0 und po(A,t) > 0.

Es hiingt allerdings von etlichen Parametern ab, ob diese Interferenzen in Erscheinung treten. Wenn sich ¢ (r, t) und
1o (r, t) beispielsweise nicht nennenswert iiberlappen (d.h. es gilt iiberall ¢ (r,t) 4+ Yo (r, t) & 11 (r, t) oder ¥ (r,t) +
Ya(r,t) & o(r,t)), verschwindet der Interferenzterm. Bei hinreichend “kleinen” Wellenpaketen und “groen” Spalten
liefert daher die quantenmechanische Beschreibung keine grundsitzlich anderen Ergebnisse als die klassische statistische
Mechanik.

Ein quantenmechanisches Teilchen kann anstelle der Superposition der beiden Teilwellenfunktionen 4 (r,t) + 1o (r, t)
auch eine Mischung s1 Py, 1)) + $2 Py, (¢)] als Zustand haben. Auch in diesem Fall gibt es keinen Interferenzterm und es
gilt

P(A,t) = te(La(s1Pyy o) + 52P(1)))) = P1(As 1) + pa(A,t)

Im néchsten Kapitel wird gezeigt, wie solche Mischungen auftreten konnen, wenn durch eine Messung feststellt wird,
durch welchen Spalt das Teilchen geht. s1, s geben dann die Wahrscheinlichkeit an, dass das Teilchen den Spalt 1 bzw.
Spalt 2 passiert hat. Der gleiche Ubergang kann auch durch Dekohdirenz stattfinden.

MI: Will man die Interferenzen im Experiment sichtbar machen, so muss das Einzelexperiment, dass
ein Teilchen den Doppelspalt passiert und in einer gewissen Entfernung detektiert wird, oft genug
wiederholt werden, so dass man in der Hiufigkeitsverteilung der Detektionen die Interferenzen er-
kennt. Das folgende Bildsequenz zeigt die langsame Herausbildung des Interferenzmusters in der
Haufigkeitsverteilung der Teilcheneinschlige bei einem Elektronenexperiment:

Mit Licht wurde das Doppelspaltexperiment von T. Young schon 1803 durchgefiihrt, allerdings ohne dass die “Kornig-
keit” der Verteilung in Erscheinung trat, was erst mit Hilfe moderner Photonendetektoren bei geringer Strahlungsintensitét
ermoglicht wird. Das Doppelspaltexperiment mit Elektronen wurde erstmalig von[Jonsson| [[1961]] durchgefiihrt. Die Beu-
gung von Elektronenstrahlen durch Interferenzen an einem Kristallgitter wurde allerdings schon von|Davisson and Germer
192’7|demonstriert.

In jiingerer Zeit werden solche Interferenzen mit moderner Prazionstechnik bei immer groBeren Objekten nachgewiesen
z.B. Cgp-Molekiilen (Abbildung a, [Arndt et al|[[1999]). 2011 lag der experimentelle Rekord bei Molekiilen mit Massen
von bis zu 6910 Wasserstoffatommassen (Abbildung c) und GroBen bis zu 6 x 102 m (Abbildung f), d.h. mehr als das
100fache des Bohrschen Atomradius (Arndt et al.,[2011).

counts (50 s)
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Diese Interferenzen verschwinden allerdings, wenn man die Molekiile erhitzt, sodass auf dem Weg durch die Apparatur
thermische Photonen emittiert werden (Hackermiiller et al., 2004)). Dies kann als experimentelle Bestitigung der Deko-
hirenztheorie gedeutet werden (Schlosshauer, 2004).
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4.8 Teilchen mit Spin

Auch der Spin eines Teilchens ist eine genuin quantenmechanische Observable, zu der es in der klas-
sischen Punktmechanik keine korrespondierende Grofle gib@ Der Spin (vgl. Ballentine [[1998]], Ka-
pitel 7) ist eine vektorielle Grofe mit drei riumlichen Komponenten

S = (5:,5,,95:)

S?=5+52+85]

fiir die die folgenden Vertauschungsrelationen gelten
{S:, Sy} = ihS,, {S,, 5.} = 1hSy, {S., .} = ihS,
{Sﬂc’ SQ} = {Syv 52} = {Szv 52} =0

Das Spektrum der Spinoperatoren ist fiir ein Spin-s-Teilchen gegeben durch
o(S,) = 0(S,) = 0(S,) = {—hs,—hs + 1,... + hs},0(S?) = {A’s(s + 1)}

wobei die Zahl s fiir Bosonen (Higgsboson, Photon, ...) ganzzahlig s € {0,1,2,....} und fiir Fer-

mionen (Elektron, Neutrino, Quark,...) halbzahlig s € {%, %, ...} ist. Bei zusammengesetzten Systeme wie

z.B. Protonen, Neutronen, Atome ergibt sich der Gesamtspin nach gewissen Regeln aus den Komponenten. Die im Stern-
Gerlach-Experiment verwendeten Silberatome verhalten sich im Grundzustand wie Spin-1/2-Teilchen, gewisse Heliuma-
tome (Orthohelium) wie Spin-1-Teilchen.

Der Spin wird als eigenes System im Hilbertraum C?**! beschrieben, ein Spin-s-Teilchen daher
im Tensorprodukt aus Teilchenhilbertraum und Spinhilbertraum z.B. in der Schrédingerdarstellung
L2(R*)®C**! durch Wellenfunktionen mit 2s + 1 Komponenten

<w75(r7 t)a ¢,8+1(’l‘, t)? tey w+s(ra t))

Man bezeichnet solche 2s + 1-komponentigen Wellenfunktion auch als Spinoren. Die Wahrscheinlichkeitsdichte fiir den
Teilchenort ergibt sich durch Summation der Betragsquadrate aller Komponenten

plr,t) = > |wn(r,t)|”

k=—s

Der Hamiltonoperator hat die Form einer (2s + 1) x (2s 4 1)-Matrix. Der Teilchenspin ist mit einem magnetischen Mo-
ment verbunden, das beim Hamiltonoperator eines Teilchens im elektromagnetischen Feld beriicksichtigt werden muss.
Fiir Spin-1/2-Teilchen wird die entsprechende Schrodingergleichung fiir die 2-komponentige Wellenfunktion auch als
Pauligleichung bezeichnet.

Spin 1/2

Fiir den Spin 1/2 ist der Hilbertraum C? und reprisentiert somit das einfachst-mégliche quantenme-
chanische System, fiir das es nur jeweils zwei orthogonale Zustandsvektoren gibt. Das Spektrum der
Spinkomponenten umfasst daher gerade zwei verschiedene Werte :I:%h. Solche einfachen Systeme
werden gern als Beispiel verwendet.

Auch die Polarisation von Photonen kann auf diese Weise beschrieben werden. Da entsprechende Experimente technisch
wesentlich einfacher durchzufiihren sind, als Stern-Gerlach-Experimente mit Spin-1/2-Teilchen, werden viele grundlegen-

den Experimente der Quantenphysik mit Photonen durchgefiihrt. Die theoretische Behandlung wirft jedoch das Problem
auf, dass Photonen als masselose Teilchen, die sich mit Lichtgeschwindigkeit bewegen, relativistisch behandelt werden

2Der gruppentheoretische Zusammenhang mit der Rotationssymmetrie zeigt, dass es sich um einen Drehimpuls han-
delt. Das klassische Analogon wire daher der Eigendrehimpuls kleiner Kugeln, der aber fiir Massepunkte wenig Sinn
ergibt.
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miissen, was den Rahmen der nicht-relativistischen QM sprengt. Die abstrakte Behandlung der Polarisation als Quantenbit
in C? hilft dariiber hinweg, verdeckt aber manche schwierige Frage (z.B. bzgl. des Teilchenorts).

Die Observablen, die die Spinkomponenten eines Spin-1/2-Teilchens beschreiben, werden durch 2x2-
Matrizen dargestellt

(0 1 (0 —i (1 0
Sx_§(1 0)’Sy_§(z‘ 0)’SZ_§<0 —1)

Lisst man den Faktor g weg, so erhilt man die Paulimatrizen, die oftmals mit o,, 0, 0. bzw. in der
Quanteninformatik einfach mit X, Y, Z bezeichnet werden, alle die Eigenwerte +1 haben und deren
Quadrat die 2x2-Einheitsmatrix ist

(1 0
2 2 2 __
Sx_Sy_SZ_—4 (0 1)

=)<~

Da die Spinkomponenten S, Sy, S, nicht miteinander kommutieren, gibt es keine gemeinsamen Eigenvektoren. Fiir die

Eigenvektoren von S, gilt z.B.
1 /1 1
v =—= <1> = —=((+ +¢-)

Die Eigenvektoren des Operators S, sind

V2 V2
1 /-1 1

Bei einem Spinsystem im Zustand (4 , fiir dessen z-Komponente des Spins der Wert —|—% streuungsfrei ist, gilt fiir die
Wabhrscheinlichkeit der Werte —i—% bzw. —% fiir die x-Komponente des Spins daher

m

h 2 1
pSz,<+(+§) = [{¢, &) = 3 =psm,g+(—2

Die Streuung von S, ist deshalb im Zustand (; maximal und gleich i.

Spin 1
Fiir den Spin 1 ist der Hilbertraum C3. Das Spektrum der Spinkomponenten ist
0(Sy) = 0(8,) = 0(S:) = {~h,0,h}, o(S?) = {21”}

Die Spinkomponenten selbst werden durch 3x3-Matrizen dargestellt

n 010 h 0 — 0 1 0 0
Sp=—=|( 101 |,8%=—|¢ 0 —i |,S.=h[ 00 O
V2 010 V2 0 « O 00 —1

Die Quadrate der Komponenten sind zwar keine Einheitsmatrizen, aber sie kommutieren paarweise

{858, = {8, 82} ={8;, 87} = 0

Stern-Gerlach-Apparatur

Im oben skizzierten Stern-Gerlach-Experiment werden elektrisch neutrale Atome verwendet, deren Massenmittelpunkt
mit einem Wellenpaket beschrieben werden kann, das sich gleichformig gradlinig in y-Richtung bewegt. Der Spin von
Atomen im Grundzustand ergibt sich aus den Elektronenspins der Atomhiille: z.B. konnen Kalium- oder Silberatome im
Grundzustand als Spin-1/2-Teilchen beschrieben werden, gewisse Heliumatome (metastabile Orthohelium-Zustinde) als
Spin-1-Teilchen. Der Hamiltonoperator fiir die Bewegung eines Atoms im Magnetfeld B(x, y, z) hat dann die Form

1
H= 7P2+QSB($7Z/72’)
2m
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mit einer reellen Konstante g. Eine vereinfachte Uberschlagsrechnung ldsst die Strahlaufspaltung im Stern-Gerlach-
Experiment verstehen: Zeigt des Magnetfeld in z-Richtung , so ergibt sich fiir den Hamiltonoperator

1
H=—P?+¢S.B.
2m

mit der z-Komponente des Magnetfelds B, € R. Man sieht leicht, dass Produktzustinde aus Teilchen-Wellenpaket
¢(z,y, z,t) und einer Spin-Eigenfunktion (5. von S, je nach Eigenwert s, (fiir Spin 1/2 s, € {*%, Jr%} fiir Spin 1
s, € {—h,0,+Ah} in positiver (s, < 0), negativer z-Richtung (s, > 0) oder gar nicht (s, = 0) abgelenkt werden, denn es
ergibt sich dann

1
H (cp(x, Y,z t) ® Csz) = <2mP2 + gSsz) @(x7 Y, z, t) ® CSZ
woraus fiir den Erwartungswert des Ortes nach der Ehrenfestschen Gleichung folgt

d? 0B,
mo(Z), = =s:9(5 ")

also eine Beschleunigung proportional zum Wert der Spinkomponente —s,. Bei Mischungen aus solchen Wellenpaketen

mit unterschiedlichen s,—Werten ergibt sich dann eine entsprechende Aufspaltung des Atomstrahls. Superpositionen
werden im nichsten Kapitel behandelt.
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