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Das Reduktionspostulat (auch als Projektions- bzw. Kollapspostulat bezeichnet) beschreibt die Zu-
standsänderung eines quantenmechanischen Systems durch eine Messung. Es wird hier gesondert
behandelt, da es nicht für alle Interpretationen einen Bestandteil der QM darstellt (z.B. kommen Lud-
wig [1983], Ballentine [1998] und Bohm [1952] ohne dieses Postulat aus).

Da es sich ausschließlich auf Messungen bezieht, ist es sinnvoll, dieses Postulat innerhalb der Mini-
malinterpretation der QM zu behandeln. Das heißt aber nicht, dass es auch notwendiger Weise ein
Bestandteil dieser Minimalinterpretation ist, wie die bereits erwähnten Beispiele von Ludwig [1983]
und Ballentine [1998] zeigen. Es wird allerdings als ein wesentlicher Bestandteil der Kopenhagener
Interpretation der QM (vgl. Heisenberg [1956]) gesehen, der eng mit einem weiteren Punkt der der-
selben verbunden ist: Alle Messinstrumente müssen - genauso wie die Präpariervorrichtungen - im
Endeffekt klassisch beschrieben werden.

v. Neumann [1932] hat das Reduktionspostulat erstmalig als eigenständiges Postulat aufgeführt, das
von Lüders [1951] präzisiert wurde.1 Die v. Neumann/Lüders-Form des Postulats beschreibt aus-
schließlich wiederholbare Messungen. Schon Pauli [1933] wies auf nicht-wiederholbare Messungen
hin, die exakte Ergebnisse liefern können. Mittlerweile sind verallgemeinerte Messungen unscharfer
Observablen weithin akzeptierter Bestandteil des Kanons. Für all diese Fälle kann eine verallgemei-
nerte Reduktionsregel angeben werden (wie z.B. in Nielsen and Chuang, 2000), bei der dann aber
das Reduktionsergebnis nicht nur von der gemessenen Observable sondern auch von der jeweiligen
Messmethode abhängt.

Nach der ausführlichen Darlegung des Reduktionspostulats in Abschnitt 1 gibt die Behandlung des
Messprozesses nach v. Neumann in Abschn. 2 eine Basis für das tiefere Verständnis der Zusammen-
hänge. In Abschn. 3 wird gezeigt, dass auch nicht-wiederholbare Messungen exakte Ergebnisse lie-
fern können, und wie eine Reduktionsregel für verallgemeinerte Messungen unscharfer Observablen
begründet werden kann. In Abschn. 4 kann man sehen, dass der Kollaps im Messprozess nicht durch
die unitäre Dynamik zustande kommen kann. In Abschn. 5 wird gezeigt, wie es möglich ist, inner-
halb der Minimalinterpretation auch ohne Reduktion oder Kollaps auszukommen. In Abschn. 6 wird
gezeigt, wie die Dekohärenztheorie das in der Kopenhagener Interpretation geforderte Klassisch-Sein
der Messinstrumente sowie die Irreversibilität der Messung zu erklären versucht.

1 Reduktion als Postulat

Die im vorigen Kapitel skizzierte Minimalinterpretation ermöglicht es, die Aussagen der Theorie
im Experiment zu überprüfen. Kernstück dieser Minimalinterpretation ist die Bornsche Regel. Da
sich das Projektionspostulat direkt daran anschließt, wiederholen wir diese hier in der passenden

1Das Postulat wird oft v. Neumann [1932] zugeschrieben, der es wohl als erster explizit formuliert und die Konse-
quenzen erörtet hat. Überlegungen zur Reduktion von Wellenfunktionen finden sich aber auch schon vorher (z.B. bei
Heisenberg, 1927). Die allgemeine Form des Postulats, die auch die Messung entarteter Observablen korrekt beschreibt,
geht hingegen auf Lüders [1951] zurück.
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Form. Im Folgenden wird vorausgesetzt, dass die Observable A∈O ein diskretes2 Eigenwertspektrum
σ(A) = {a1,a2, ...} ⊆ R besitzt, d.h.

A = ∑
a∈σ(A)

aPa

wobei Pa = PA({a}) das projektionswertige Maß der Borelmenge {a} darstellt bzw. den Projektions-
operator auf den Eigenraum von A für den Eigenwert a.

1.1 Bornsche Regel

Die Wahrscheinlichkeit, im Zustand W ∈S den Eigenwert a ∈ σ(A) der Observablen A zu messen,
ist3

pA,W ({a}) = tr(PaW )

1.2 v. Neumann/Lüders-Projektionspostulat

Wenn bei einer Messung der Observablen A im Zustand W ∈S der Eigenwert a ∈ σ(A) gemessen
wird, so ist der Zustand des Systems direkt nach der Messung4

Wa =
1

tr(PaW )
PaW Pa

1.3 Wiederholbarkeit und reine Zustände

Bereits die Bornsche Regel impliziert, dass ein bestimmter Wert aus dem Spektrum der Observablen
gemessen wird. Das Projektionspostulat fordert darüber hinaus eine Zustandsänderung am gemesse-
nen System, die im Experiment natürlich nur dann eine Rolle spielt, wenn weitere Messungen an dem
gleichen System5 durchgeführt werden.6

Ist der Zustand W rein, so ist es auch der Zustand Wa, und man kann mit Zustandsvektoren ψ,ψa vor
bzw. nach der Messung auch schreiben

ψa =
1√〈

ψ,Paψ
〉Paψ

2Für Observablen mit kontinuierlichem Spektrum gibt es keine wiederholbaren Messungen (vgl. Busch et al., 1991).
Deshalb klammern wir diese im Folgenden aus.

3Die hier verwendete Form der Bornschen Regel ist eine Spezialisierung für Observablen mit reinem Eigenwertspek-
trum. Im vorigen Kapitel haben wir eine allgemeinere Formulierung verwendet, die auch für Observablen mit kontinuier-
lichen Spektrum geeignet ist.

4Geht man davon aus, dass sich der Zustand des Systems W (t) nach Vollendung der Messung zum Zeitpunkt tM min-
destens für eine kurze Zeitspanne s im Sinne der Normtopologie stetig entwickelt, sodass es für jedes ε > 0 eine Zeitspanne
τ > 0 mit τ < s gibt, in der

∥∥W (tM + τ)−W (tM)
∥∥ < ε , dann ist der Zustand direkt nach der Messung näherungsweise

W (tM).
5Bei zusammengesetzten Systemen ist dabei das Gesamtsystem zu betrachten, auch wenn die Messungen nur an

einzelnen Teilsystemen durchgeführt werden.
6Für die Ensemble-Interpretation gibt es allerdings ein Problem: Zustände werden nicht mit individuellen Systemen,

sondern mit Ensembles verbunden. Der Zustand des Systems nach der Messung des Wertes a kann aber als ein neues
Ensemble interpretiert werden, das nach der Messung durch Selektion aller Systeme, an denen der Wert a gemessen
wurde, aus dem alten Ensemble hervorgeht. Dies entspricht dem experimentellen Vorgehen z.B. bei der Datensammlung
mit Hilfe der Koinzidenzmethode Bothe [1954].
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wobei ψa ein Eigenvektor von A zu Eigenwert a ist. Man bezeichnet die Zustandsreduktion in dieser
Form auch als Kollaps der Wellenfunktion7

Der Zustand nach der Messung Wa ist ein Eigenzustand der Observablen A zum Eigenwert a. Man be-
zeichnet diese Form der Messung daher auch als projektiv. Eine sofortige Wiederholung der Messung
liefert mit Sicherheit das gleiche Ergebnis a sowie erneut den gleichen Zustand Wa. Die Messung ist
daher wiederholbar (bei Pauli [1933] “Messung erster Art”). Implizit wird dabei vorausgesetzt, dass
es sich um eine exakte Messung handelt (bei Pauli “ideale Messung”).

Wenn man nicht-wiederholbare, nicht-projektive oder nicht-ideale Messungen ebenfalls in Betracht
zieht, sollte im Postulat die Art der Messung durch ein entsprechendes Adjektiv eingeschränkt wer-
den. Allerdings hat das Postulat dann eher die Form einer Definition.

1.4 Experimentelle Begründung: Compton-Simon Experiment

Das Musterbeispiel, das v. Neumann (1932, III.3.) zur Begründung des Projektionspostulats disku-
tiert, ist das Compton-Simon-Experiment (vgl. Compton, 1927): Bei der Bestrahlung einer Folie mit
gerichteten Gamma-Strahlen werden Elektronen herausgeschlagen. Für die einzelnen Stoßvorgän-
ge gilt der (relativistische) Energie/Impulserhaltungssatz: Die Summe der Energien und Impulse des
Elektrons und des Gammaquants vor und nach dem Stoß sind gleich. Die Austrittsrichtung des Elek-
trons ist dadurch nicht festgelegt, das Gammaquant muss aber in die passende Richtung und mit
der passenden Energie (bzw. Frequenz) abgelenkt werden, um die Energie- und Impulserhaltung zu
gewährleisten. Dies lässt sich durch entsprechende Messungen am Gammaquant und am Elektron
verifizieren. Compton und Simon fotografierten entsprechende Spuren in einer Wilsonschen Nebel-
kammer; Bothe und Geiger (vgl. Bothe and Geiger, 1925, Bothe, 1954) zählten Koinzidenzen an zwei
entsprechend ausgerichteten Teilchendetektoren.

v. Neumann betrachtete das Experiment als die Durchführung zweier aufeinanderfolgender Messun-
gen an einem System, nämlich dem Gesamtsystem Gammaquant-Elektron und folgerte, dass die erste
Messung zur Reduktion des Zustands führt, sodass das Ergebnis der zweiten Messung durch den neu-
en Zustand determiniert ist, wobei die tatsächliche Reihenfolge der Messungen keine Rolle spielt8.

7Der Begriff Kollaps deutet auf eine ontische Interpretation der Wellenfunktion hin. Bei einer epistemischen Interpre-
tation wird eher von Reduktion gesprochen.

8Energie und Impuls sind bei der freien Bewegung nach dem Stoß Erhaltungsgrößen. Des weiteren werden Observa-
blen verschiedener Teilsysteme gemessen, die daher alle kommutieren.
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1.5 Zustand nach der Messung, (In-)Determinismus und Irreversibilität

Das Reduktionspostulat enthält die Bedingung, dass der Wert a gemessen wurde, und postuliert daher
mit Wa implizit bedingte Wahrscheinlichkeiten für die Ergebnisse weiterer möglicher Messungen in
einem zusammengesetzten Experiment, z.B. für das Ergebnis b einer weiteren Messung der Observa-
blen B mit dem PVM PB({b}) = Pb

p({b}|{a}) = tr(PbWa) =
tr(Pb PaW Pa)

tr(PaW )

Der Zustand nach der Messung W ′ ohne diese Bedingung, also ohne Annahme des Ergebnisses a, ist
eine Mischung aller möglichen Zustände Wa bzw. ψa für alle möglichen Ergebnisse a ∈ σ(A), wobei
die statistischen Gewichte gerade durch die Wahrscheinlichkeiten der Messergebnisse gegeben sind

W ′ = ∑
a∈σ(A)

pA,W ({a})Wa = ∑
a∈σ(A)

tr(PaW )Wa = ∑
a∈σ(A)

PaW Pa (1.1)

Dies entspricht dem Satz der totalen Wahrscheinlichkeit

p({b}) = ∑
a∈σ(A)

p({b}|{a})p({a})

denn

p({b}) = tr(PbW ′) = tr(Pb ∑
a∈σ(A)

PaW Pa) = ∑
a∈σ(A)

tr(Pb PaW Pa)

tr(PaW )
tr(PaW )

Der Zustand W ′ beschreibt das System nach einer Messung, wenn das Ergebnis nicht bekannt ist, z.B.
bei der Vorhersage künftiger Messungen. Man kann die Mischung daher epistemisch interpretieren:
in der Realität liegt einer der Zustände Wa (mit der Wahrscheinlichkeit pA,W ({a})) vor, man weiß
bloß noch nicht welcher. Der Zustand W ′ ergibt sich aber auch auf anderem Weg in der theoretischen
Behandlung des Messprozesses (s. Abschn. 2.5).

Auch aus einem reinen Zustand W vor der Messung entsteht auf diese Weise nach der Messung eine
Mischung W ′ (aus Eigenzuständen von A), wenn nicht W nicht bereits ein Eigenzustand von A ist.
Für die Entropie gilt dabei

S(W ′)≥ S(W )

wobei Gleichheit gilt, wenn W bereits ein Eigenzustand von A ist.

Der Zustandsübergang W →Wa ist i.A. weder deterministisch noch reversibel: Jedes a ∈ σ(A), für
das die Wahrscheinlichkeit pA,W ({a}) = tr(PaW ) größer als 0 ist, kann gemessen werden; der zugehö-
rige Endzustand Wa tritt mit der gleichen Wahrscheinlichkeit ein. Andererseits können verschiedene
Zustände vor der Messung das gleiche Messergebnis a und damit auch den gleichen Zustand Wa zur
Folge haben.
Beispielsweise können mit den reinen Eigenzuständen ψa1 ,ψa2 mit a1 6= a2, die orthogonalen Zustände 1√

2
(ψa1 +ψa2)

und 1√
2
(ψa1 −ψa2) beide den Zustand ψa2 (mit Wahrscheinlichkeit 1

2 ) zur Folge haben.

Der Zustandsübergang W →W ′ ist dagegen deterministisch aber i.A. nicht reversibel. Durch W und
A ist aufgrund von (1.1) der Zustand W ′ eindeutig bestimmt. Verschiedene Zustände vor der Messung
können aber den gleichen Zustand W ′ zur Folge haben.
Beispielsweise haben die reinen Zustände 1√

2
(ψa1 +ψa2) und 1√

2
(ψa1−ψa2) beide den gemischten Zustand W ′= 1

2 P[ψa1 ]
+

1
2 P[ψa2 ]

zur Folge.
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Man bezeichnet den Übergang W →Wa auch als selektive Messung9, den Übergang W →W ′ dagegen
als nicht-selektiv.

Beide Übergänge stellen messbare Zustandsänderungen dar, wenn nicht von vorneherein ein Eigenzu-
stand vorliegt. Dies kann man z.B. im Doppelspaltexperiment sehen. Die Interferenzen verschwinden,
wenn die Superposition der beiden Teilwellen durch eine Messung des Spaltes (analog zum letzten
Beispiel) in eine Mischung umgewandelt wird. Ohne Selektion nach dem Messergebnis erhält man
dabei eine 2-Höcker-Verteilung, mit Selektion dagegen einen Höcker hinter dem selektierten Spalt.
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Die Irreversibilität dieser Zustandsübergänge wird oft mit der Irreversibilität eingetretener Fakten in
Zusammenhang gebracht: Jedes tatsächlich im Labor gemessene und aufgezeichnete Ergebnis stellt
ein Faktum dar, das nicht mehr rückgängig gemacht werden kann (vgl. v. Weizsäcker, 1985).

Die zwangsläufige Veränderung des Zustands durch Messungen spielt eine wichtige Rolle in der
technischen Anwendung durch die Quantenkryptographie, weil dadurch Abhörversuche erkannt und
verhindert werden können (z.B. beim BB84-Protokoll s. Nielsen and Chuang [2000] ).

1.6 Sequentielle Messungen, Kommutativität und Unbestimmheitsrelation

Werden kommutierende Observablen A,B sofort nacheinander wiederholbar gemessen mit den Mes-
sergebnissen a,b, so ergibt sich nach den Messungen ein gemeinsamer Eigenzustand

Wab =
1

tr(PbPaW )
PbPaW PaPb

Die Reihenfolge der Messungen spielt wegen der Kommutativität von A,B bzw. Pa,Pb keine Rolle.
Bei weiteren sofortigen Wiederholungen der Messungen werden mit Sicherheit wieder die gleichen
Ergebnisse a,b gemessen. Man kann diese Nacheinanderausführung auch als gemeinsame, wiederhol-
bare Messung von A und B in einem gemeinsamen Wahrscheinlichkeitsraum (σ(A)×σ(B),B(σ(A)×
σ(B)),pW,AB) deuten, in dem alle borelmessbaren Funktionen f : σ(A)×σ(B)→ R,(a,b) 7→ f (a,b)
von A und B als Zufallsvariablen dargestellt werden können. Die Marginalverteilungen der Messer-
gebnisse für A und B sind die gleichen wie bei exklusiven Messungen der Einzelobservablen, z.B.:

pW,A({a}) = tr(PaW ) = ∑
b∈σ(B)

pW,AB((a,b)) = ∑
b∈σ(B)

tr(PaPbW )

Bei nicht-kommutierenden Observablen ist dies i.A. nicht möglich. Ohne gemeinsame Eigenzustände
variieren die Messergebnisse mit der Reihenfolge der Messungen und streuen bei Wiederholungen.
Dies sieht man beispielsweise, wenn man sequentielle Orts- und Impulsmessungen für endliche Intervalle betrachtet.
Wenn PδX der Projektionsoperator auf ein Ortsintervall der Größe δX ist, so gilt nach einer positiven Messung (d.h.
Messergebnis 1) für die Streuung des Orts im reduzierten Zustand WδX nach der Messung σX ≤ δX , da es sich um einen
Eigenzustand von PδX handelt. Wird an diesem Zustand WδX der Projektionsoperator PδP auf ein Impulsintervall der Größe
δP positiv gemessen, so gilt dann für den reduzierten Zustand WδX ,δP nach der Unbestimmtheitsrelation σX ≥ h̄

2 δP. Der Ort

9In der Ensemble-Interpretation entspricht der Übergang W →Wa der Bildung eines neuen Subensembles: nämlich
das Ensemble aller Systeme, bei denen der Wert a gemessen wurde, während W →W ′ nur eine Transformation des
bestehenden Ensembles darstellt.
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streut also nach der Impulsmessung umso stärker, je kleiner δP ist, auch wenn vor der Impulsmessung die Streuung kleiner
als δX war. Entsprechendes gilt umgekehrt, wenn die Reihenfolge der Messungen vertauscht wird. Die Impulsmessung
verändert offensichtlich die Ortsverteilung. Man spricht auch von einer Störung durch die Impulsmessung und kann dafür
ebenfalls eine “Unschärferelation” angeben (vgl. Busch et al. [2007]).

In Spurdetektoren für Teilchen kann man, wie bereit im letzten Kapitel angeführt, einen ähnlichen Effekt beobachten: Je
höher die Auflösung der Ortsmessungen ist, desto mehr wird die usprüngliche Teilchenbahn in eine zufällige Zickzack-
bewegung überführt, da der Impuls immer stärker streut.

Zwar kann man für die Messergebnisse auch in diesem Fall einen Wahrscheinlichkeitsraum des Gesamtexperiments ange-
ben, allerdings stimmen die Marginalverteilungen der nicht-kommutierenden Observablen dann nicht mit den Verteilun-
gen für exklusive Messungen der Einzelobservablen überei, wie man es im Beispiel an den unterschiedlichen Streuungen
der Ortsmessung sieht.

1.7 Verallgemeinertes Reduktionspostulat

Das Projektionspostulat nach v.Neumann/Lüders setzt wiederholbare Messungen voraus und ignoriert nicht-wiederholbare
Messungen, die durchaus exakte Ergebnisse liefern können. Pauli führte schon [1933] die Unterscheidung von idea-
ler Messung erster Art (exakte Ergebnisse, wiederholbar) und idealer Messung zweiter Art (exakte Ergebnisse, nicht
wiederholbar) ein. Mittlerweile sind auch verallgemeinerte Messungen unscharfer Observablen akzeptiert, sodass eine
verallgemeinerte Form des Postulats nötig ist, wenn man die Reduktion bei all diesen Messungen korrekt beschreiben
will.

Nielsen and Chuang [2000] geben eine Form an, die einfach aus der Theorie des Messprozesses deduziert werden kann
(s. Abschn. 3): Für jedes diskrete POVM {Ek ∈ E (H )}k existieren Messoperatoren10 Mk ∈L (H ) mit Ek = M†

k Mk, die
eine Messung des POVM beschreiben. Tritt bei einer Messung, die durch die Operatoren {Mk ∈L (H )}k beschrieben
wird, im Zustand W ∈S der Effekt E j = M†

j M j ein, so ist der Zustand des Systems nach der Messung

Wj =
1

tr(M†
j M jW )

M†
j WM j

bzw. ohne Konditionierung auf ein bestimmtes Ergebnis

W ′ = ∑
j

tr(M†
j M jW )Wj = ∑

j
M†

j WM j

Die Messoperatoren {Mk ∈ L (H )}k sind allerdings durch das POVM {Ek ∈ E (H )}k nicht eindeutig bestimmt. Sie
hängen von der Messmethode bzw. der konkreten Messapparatur ab. Dies gilt daher auch für den Zustand des Systems
nach der Messung.

Da Observablen durch ein PVM gegeben sind, umfasst diese Reduktionsregel auch das obige v. Neumann-Lüders-
Projektionspostulat: Für wiederholbare Messungen der Observablen A sind die Messoperatoren gerade die Projektions-
operatoren Pa = Ma = M†

a = M2
a , sodass sich aus der verallgemeinerten Reduktionsregel die v. Neumann-Lüderssche

Regel als Spezialfall ergibt.

Weiterhin gilt: Ist die Messung eines POVMs für alle Zustände wiederholbar, so sind die Messoperatoren eindeutig be-
stimmt: es handelt sich um orthogonale Projektionsoperatoren eines PVM. Wiederholbare Messungen mit dem v. Neu-
mann/Lüderssche Projektionspostulat können also als idealisierter Grenzfall einer verallgemeinerten Messung verstanden
werden.

1.8 Bemerkungen

Wie v. Neumann (1932, V.1.) erörterte, gibt es in der Quantenmechanik grundsätzlich zwei verschie-
dene Arten der Zustandsänderung, nämlich durch

1. durch (selektive) Messung eines Wertes nach dem Reduktionspostulat: diskontinuierlich, inde-
termistisch, irreversibel

10Es handelt sich dabei um Krausoperatoren (vgl. Abschnitt über offene Systeme)
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2. durch die unitäre Dynamik nach der Schrödingergleichung: kontinuierlich, deterministisch, re-
versibel

Der irreversible, aber deterministische Übergang durch eine nicht-selektive Messung wird bei v. Neu-
mann nicht erwähnt. Die Frage, inwieweit der Zustandsübergang durch Messung auf die unitäre Dy-
namik zurückgeführt werden kann, werden wir weiter unten in der Theorie des Messprozesses disku-
tieren.

Wenn Messgeräte als klassische Systeme betrachtet werden müssen, wie es in der Kopenhagener
Interpretation immer verlangt wird, stellt sich die Frage, wie sich die Wechselwirkung eines quan-
tenmechanischen Systems mit einem klassischen Messinstrument gestaltet. Bornsche Regel und Re-
duktionspostulat können diese Lücke zumindest teilweise füllen: Das klassische Messinstrument wird
entsprechend der Bornschen Regel durch das quantenmechanische System in einen bestimmten Zei-
gerzustand versetzt, das quantenmechanische System nach der Kollapsregel in den entsprechenden
Eigenzustand; beides erfolgt mit der durch die QM vorgegebenen Wahrscheinlichkeit.

Dabei wird dies oft wesentlich allgemeiner verstanden, als es es der Begriff Messung zum Ausdruck
bringt, z.B. bemerken Landau-Lifschitz: “Unter einer Messung versteht man in der QM jeden Wech-
selwirkungsprozess zwischen einem klassischen und einem Quantenobjekt, der unabhängig von ir-
gendeinem Beobachter abläuft.”

Die Nützlichkeit beider Postulate für technische Anwendungen quantenmechanischer Systeme in-
nerhalb klassischer Maschinen ist damit offensichtlich. Im Gegensatz zur Bornschen Regel ist aber
sowohl die Gültigkeit als auch die Notwendigkeit des Reduktionspostulats umstritten:

• Die übliche v. Neumann/Lüders-Form des Reduktionspostulats gilt nur für wiederholbare Mes-
sungen. Will man das Postulat in dieser traditionellen Form korrekt formulieren, stellt sich die
Frage, inwieweit es über die Definition einer wiederholbaren Messung hinausgeht.

• In allgemeingültigen Reduktionsregeln für nicht-wiederholbare Messungen hängt das Redukti-
onsergebnis von der Messmethode ab. Es stellt sich dann die Frage, welchen Nutzen und welche
Tragweite ein Reduktionspostulat hat.

• In der quantenmechanischen Theorie des Messprozesses können für sequentiell durchgeführte
wiederholbare Messungen die gleichen Wahrscheinlichkeitsaussagen für Folgemessungen auch
ohne Reduktionspostulat unmittelbar aus der unitären Dynamik abgeleitet werden (s. Abschn.
5). Dies wirft die Frage auf, ob überhaupt ein Reduktionspostulat benötigt wird.

Zustandsübergänge durch Reduktion sind allerdings im Gegensatz zur unitären Dynamik i.A. irrever-
sibel, was der Faktizität tatsächlich registrierter Messergebnisse im Labor entspricht. Die Ergebnisse
unitärer Dynamik können dagegen stets wieder rückgängig gemacht werden, sodass darauf basierende
Ergebnisse im Prinzip nie endgültig sind.

Und selbst wenn man in der Systematik möglicherweise ohne ein Reduktionspostulat auskommt, ist
es doch in der für die jeweilige Messmethode geeigneten Form empirisch vertretbar und ermöglicht
eine vereinfachte Beschreibung des gemessenen Systems nach der Messung. Daher kann der Inhalt
des Postulats zumindest als nützliche “Daumenregel” für die Anwendung in Versuchsanordnungen
bzw. technischen Vorrichtungen betrachtet werden.

2 Der Messprozess in der QM nach v. Neumann

J. v. Neumann gab [1932] eine abstrakte quantenmechanische Beschreibung des Messprozesses als
Wechselwirkung zwischen dem zu messenden System S und einem quantenmechanischen System
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M, das als Messinstrument fungiert. Aus einigen erwünschten Eigenschaften einer idealen Messung
leitete er gewisse mathematische Forderungen ab, die eine abstrakte Beschreibung des Messprozesses
ermöglichen. Am Ende berechnet er ein konkretes Beispiel für die Ortsmessung, das zeigt, dass die
aufgestellten Forderungen - zumindest näherungsweise - auch erfüllbar sind.

Da Messungen oder Beobachtungen in der Interpretation der QM i.A. vorausgesetzt werden, besteht
bei der Interpretation der quantenmechanischen Behandlung des Messvorgangs eine gewisse Gefahr,
in Zirkel zu geraten. Man kann diese Gefahr entschärfen, wenn man von vorneherein eine begriffliche
Unterscheidung einführt und und zwischen direkten und indirekten Messungen unterscheidet. v. Neu-
manns Messprozess beschreibt in erster Linie indirekte Messungen. Die Bornsche Regel und (je nach
Interpretation das Reduktionspostulat) sind Forderungen an direkte Messungen, deren Beschreibung
möglicherweise völlig außerhalb der QM liegt. Bei indirekten Messungen wird ein Quantensystem
als Instrument (Sonde, Apparat) verwendet, um ein anderes Quantensystem zu untersuchen. An die-
sem Instrument wird schließlich eine direkte Messung vorgenommen, deren Resultat es ermöglicht,
Rückschlüsse auf das andere Quantensystem zu ziehen11. Diese direkte Messung wird von manchen
Autoren auch als Ablesung des Messinstruments bezeichnet12.
Will man im Zuge einer universellen quantenmechanischen Beschreibung der Welt die direkte Messung ebenfalls quan-
tenmechanisch behandeln, so muss man im logischen Aufbau auf die Bornsche Regel (sowie das Projektionspostulat)
verzichten und erklären, wie sie sich als Folge dieser quantenmechanischen Weltbeschreibung ergibt. Viele Publikatio-
nen kreisen daher auch um das Thema der Deduzierbarkeit der Bornschen Regel, wobei bisher keine Argumentation als
zirkelfrei akzeptiert ist . Postuliert man dagegen die Bornsche Regel, so ist fraglich, ob die zugehörige Messung dann Ge-
genstand der QM sein kann. Für N. Bohr mussten daher Messgeräte wie auch der ganze experimentelle Rahmen klassisch,
d.h. nicht quantenmechanisch, beschrieben werden. Ein anderer Standpunkt, der v. Neumann und E. Wigner zugeordnet
wird, siedelt dagegen die direkte Messung im Beobachtungsakt des Bewusstseins an.

2.1 System, Zustand vor der Messung und gemessene Observable

Wir folgen v. Neumanns Darstellung einer indirekten Messung. Dabei übernehmen wir die Bezeich-
nungen aus dem vorigen Abschnitt und gehen davon aus, dass das betrachtete System S im Hilber-
traum H beschrieben wird und die gemessene Observable A ∈ Ô beschränkt ist und ein diskretes
Eigenwertspektrum σ(A) hat, d.h.

A = ∑
a∈σ(A)

aPa

mit Projektionsoperatoren Pa ∈P(H ).{αk ∈H } sei eine Orthonormalbasis von H aus Eigenvek-
toren von A, d.h. Aαk = akαk. Wenn wir, wie v. Neumann [1932] zusätzlich vereinfachend davon
ausgehen, dass die Observable A nicht entartet ist, d.h.

〈
α j,αk

〉
= 0⇒ a j 6= ak, dann ist im Zustand

vor der Messung
ψ = ∑

k
ckαk

die Wahrscheinlichkeit pA,ψ({a j}) des Ereignisses {a j} ∈B(R) gegeben durch

pA,ψ({a j}=
〈
ψ,Pa jψ

〉
=
∣∣〈ψ,α j

〉∣∣2 = ∣∣c j
∣∣2

2.2 Messinstrument

Das Messinstrument M zur Messung der Observablen A wird selbst als ein quantenmechanisches
System mit dem Hilbertraum HM beschrieben.

11Diese Unterscheidung wird z.B. in Braginsky and Khalili [1992], Breuer and Petruccione [2002] eingenommen und
ermöglicht eine unproblematische Betrachtung der Messvorgänge.

12Mittelstaedt [1998]

8



Eine gewisse Menge von reinen Zuständen Z ⊂HM wird als Menge von Zeigerzuständen des Mess-
instruments interpretiert: sie ’zeigen’ die Messergebnisse an, d.h. wenn das Messinstrument nach der
Messung im Zustand ϕ ∈ Z ist, wurde ein bestimmter Wert a der Observablen A gemessen. Als zuge-
hörige Zeigerobservable betrachten wir den Projektionsoperator P[ϕ], der das Ereignis repräsentiert,
dass das Messinstrument im zugehörigen Zeigerzustand ϕ ist.

Für ein ideales Messinstrument müssen diese Zeigerzustände Z gewisse Bedingungen erfüllen:

Eindeutigkeit und Unterscheidbarkeit

1. Eindeutigkeit der Zeigerzustände: Die Menge der möglichen Messwerte σ(A) wird injektiv in
die Menge der Zeigerzustände abgebildet, d.h. es gibt eine Abbildung

ϕ̃ : σ(A)→ Z,ak→ ϕ̃(ak) = ϕk (2.1)

bei der zu verschiedene Werten der Observablen auch verschiedene Zeigerzustände gehören

a j 6= ak⇒ ϕ j 6= ϕk (2.2)

denn nur dann kann man anhand des Zeigerzustandes eindeutig den zugehörigen Messwert
ermitteln.

2. Sichere Unterscheidbarkeit verschiedener Zeigerzustände: Die Zeigerzustände für verschiedene
Messwerte müssen orthogonal sein, d.h.

a j 6= ak⇒
〈
ϕ j,ϕk

〉
= 0 (2.3)

damit sie bei der Ablesung mit Sicherheit unterschieden werden können. Denn nur dann gilt im
Zeigerzustand ϕ j für die Wahrscheinlichkeit des Ereignisses P[ϕk] (mit ϕ j 6= ϕk)

pP[ϕk ]
,ϕ j(1) =

〈
ϕ j,P[ϕk]ϕ j

〉
=
∣∣〈ϕ j,ϕk

〉∣∣2 = 0

2.3 Wechselwirkung

Das aus dem zu messenden System und dem Messinstrument zusammengesetzte Gesamtsystem wird
im Produkthilbertraum H ⊗HM beschrieben.

Das Messinstrument befindet sich vor der Messung in einem Ausgangszustand ϕ0, wechselwirkt für
eine begrenzte Zeitspanne mit dem System. Anschließend sind die Zustände von System und Mess-
instrument so miteinander korreliert, dass man am Zustand des Messinstrumentes den Messwert der
zu messenden Observablen A ∈ O(H ) ablesen kann.

Die Wechselwirkung wird als unitäre Transformation U im Produktraum H ⊗HM beschrieben. Die
konkrete Form und Dauer dieser Wechselwirkung werden wir hier nicht angeben, genau sowenig, wie
wir die Dynamik der isolierten Systeme betrachten. Die Transformation U muss aber eine Reihe von
Bedingungen erfüllen, wenn der Wechselwirkungsvorgang für eine ideale Messung der Observablen
A geeignet sein soll.
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Kalibrierung und Wiederholbarkeit

1. Kalibrierung (exakte Messung, ideale Messung): Für jeden Eigenzustand αk der Observablen A
muss das Messinstrument nach der Messung den zugehörigen Zeigerzustand ϕk anzeigen. D.h.
aus dem Anfangszustand αk⊗ϕ0 ∈H ⊗H M des zusammengesetzten Systems, muss sich für
alle ak ∈ σ(A) ein Endzustand der Form

U(αk⊗ϕ0) = χk⊗ϕk (2.4)

ergeben, wobei χk ∈H ein nicht näher spezifizierter Zustand des Systems S ist.

2. Wiederholbarkeit (Messung 1. Art): Ein Eigenzustand αk der Observablen A soll durch den
Messvorgang nicht verändert werden. D.h. aus dem Anfangszustand αk⊗ϕ0 ∈H ⊗H M des
zusammengesetzten Systems, muss sich, wenn man gleichzeitig die Kalibrierung verlangt, für
alle ak ∈ σ(A) der Endzustand

U(αk⊗ϕ0) = αk⊗ϕk (2.5)

ergeben.

2.4 Anfangszustand

Mittels dieser geforderten Eigenschaften der Wechselwirkung ist es jetzt möglich, den Messvorgang
zu beschreiben. Das Messinstrument befindet sich vor der Messung in einem Zustand ϕ0 ∈HM, das
zu messende System in einem Zustand ψ ∈H , dessen Entwicklung nach den Eigenvektoren der zu
messenden Observablen A durch

ψ = ∑
k

ckαk

gegeben ist. Das Gesamtsystem H ⊗H M befindet sich dann im Anfangszustand

ψ⊗ϕ0 =

(
∑
k

ckαk

)
⊗ϕ0 = ∑

k
ck(αk⊗ϕ0)

2.5 Verschränkter Endzustand

Bei einer wiederholbaren Messung ergibt sich dann nach den obigen Überlegungen wegen der Linea-
rität von U aus diesem Anfangszustand der Endzustand

U(ψ⊗ϕ0) = ∑
k

ckU(αk⊗ϕ0) = ∑
k

ckαk⊗ϕk

Wir bezeichnen diesen Endzustand mit

Φ = ∑
k

ckαk⊗ϕk (2.6)

Dieser Zustand ist eine Superposition aus den verschiedenen möglichen Ergebnissen der Messung. Es
handelt sich um einen verschränkten Zustand, in dem Zeigerzustände vom Messinstrument mit den
Eigenzuständen der Observablen A korreliert sind.

Die Wahrscheinlichkeiten der Zeigerzustände des Messinstruments im Zustand Φ werden am Ge-
samtsystem SM durch die Erwartungswerte der Projektionsoperatoren 1⊗P[ϕ j] bestimmt, es gilt für
alle j ∈ Iσ(A)

pΦ(P[ϕ j]) =
〈
Φ ,(1⊗P[ϕ j])Φ

〉
=
∣∣c j
∣∣2
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Die Wahrscheinlichkeit des Zeigerzustands ϕ j ist also die gleiche, wie die Wahrscheinlichkeit des
Wertes a j der Observablen A im Zustand ψ , für alle j ∈ Iσ(A)

pΦ(P[ϕ j]) = pA,ψ({a j})

Der reduzierte Zustand des Messinstruments ist daher eine Mischung der Zeigerzustände

WM = ∑
k

∣∣ck
∣∣2P[ϕk]

Der reduzierte Zustand des Systems ist genau W ′ aus (1.1), denn es gilt:

trHM(P[Φ ]) = ∑
k

∣∣ck
∣∣2P[αk] =W ′ (2.7)

Für manche Interpretationen der QM endet die Beschreibung des Messvorgangs mit Erreichen des
Zustands Φ . Der in Abschnitt 1.5 diskutierte Zustandsübergang ψ →W ′ durch die Messung, wie er
z.B. am Doppelspalt beobachtet wird, kann mit (2.7) erklärt werden. Weitergehende Zusammenhänge
zwischen dem System und dem Messgerät im Zustand Φ werden in Abschnitt 5 betrachtet.

2.6 Ablesung und Reduktion

Nach der Kopenhagener Interpretation der QM ist aber die indirekte Messung mit Erreichen des
Zustands Φ noch nicht beendet13. Erst eine direkte Messung, nämlich die Ablesung des Messinstru-
ments, liefert das definitive und endgültige Ergebnis. Für diese direkte Messung der Zeigerobser-
vablen werden die Postulate aus Abschnitt 1 angewendet: Nach der Bornschen Regel wird mit der
Wahrscheinlichkeit

pΦ(P[ϕ j]) = pA,ψ({a j}) =
∣∣c j
∣∣2

der Zeigerzustand ϕ j abgelesen, der dem Messwert a j zugeordnet ist. Nach dem Reduktionspostulat
findet unter der Bedingung, dass der Zeigerzustand ϕ j abgelesen wird, am Gesamtsystem der folgende
Übergang statt:

Φ →Φ j =
1√∣∣c j
∣∣2
(

1⊗P[ϕ j]

)
Φ =

1∣∣c j
∣∣∑

k
ckαk⊗P[ϕ j]ϕk = α j⊗ϕ j

d.h. das Gesamtsystem befindet sich nach der Ablesung von ϕ j in einem Produktzustand mit dem
Messinstrument im Zeigerzustand ϕ j und dem System im Eigenzustand α j der Observablen A.

Der Zustand des Gesamtsystems nach der Ablesung ohne Bedingung, also ohne Annahme des Ergeb-
nisses ϕ j, ist

WSM = ∑
j

∣∣c j
∣∣2P[α j⊗ϕ j] (2.8)

mit dem durch die Ablesung unveränderten reduzierten Zustände des Systems

trHM(WSM) = ∑
k

∣∣ck
∣∣2P[αk] =W ′

und des Messinstruments
trH (WSM) = ∑

k

∣∣ck
∣∣2P[ϕk] =WM

13Daher bezeichnen manche Autoren Mittelstaedt [1998], Busch et al. [1991] den Wechselwirkungsvorgang auch nur
als Premeasurement.
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2.7 Stern-Gerlach-Experiment als Beispiel

Das Stern-Gerlach-Experiment wird oft als einfaches Beispiel für eine indirekte Messung angeführt:
Der Ort, an dem das Silberatom detektiert wird, gibt Aufschluss über den Wert der entsprechenden
Spinkomponente. Der Spin wird dabei als eigenständiges Quantensystem betrachtet, während der
Massenmittelpunkt des Atoms als Teilchen das Messinstrument darstellt. Die Detektion des Teilchen-
orts entspricht der Ablesung der Zeigerkoordinate.


+

 
+

U
D


0

 


-

 
-

+

-

Das Teilchen hat am Anfang den Zustand ϕ0- ein Wellenpaket, dass sich quasi-klassisch geradlinig
gleichförmig bewegt - während das zu messende Spinsystem den unbekannten Zustand ζ hat. Bei
der Passage des inhomogenen Magnetfelds findet eine kurze Wechselwirkung statt, die nach Kapitel
“Grundprinzipien der Quantenmechanik”, Abschnitt 4.8. durch den Hamiltonoperator H = 1

2mP2 +
gSzBz bzw. die unitäre Transformation

U = exp(− i
h̄

tmH)

beschrieben wird, wobei tm die Zeitdauer der Wechselweikung angibt. Für die Spinzustände ζ+ bzw.
ζ−ergibt sich dabei eine Ablenkung in positiver oder negativer Richtung. Dies ist gerade die Eichbe-
dingung.

Die Detektion des Teilchenorts findet am Schirm D statt. Dabei wird angenommen, dass die Wahr-
scheinlichkeiten dafür, dass das abgelenkte Wellenpaket ϕ+ im Bereich + bzw. das abgelenkte Wel-
lenpaket ϕ− im Bereich - detektiert wird, nahe bei 1 liegen. Befindet sich das Spinsystem am Anfang
in einem Superpositionszustand

ζ = c−ζ−+ c+ζ+

so ist der Zustand vor der Detektion

Φ = c−ϕ−⊗ζ−+ c+ϕ+⊗ζ+

Die Wahrscheinlichkeit p+ bzw. p−, das Teilchen im entsprechenden Bereich zu detektieren, ergibt
sich dann aus den Betragsquadraten der Komponenten wie erwartet zu

p+ =
∣∣c+∣∣2, p− =

∣∣c−∣∣2
2.8 Bemerkungen

v. Neumanns Bedingungen

Die Orthogonalität der Zeigerzustände ist oftmals nur näherungsweise gegeben, wie die überlappen-
den Wellenpakte im Stern-Gerlach-Experiment zeigen. Die Kalibrierung garantiert die “Exaktheit”
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der Messergebnisse. Man sieht sofort, dass nur kommutierende Observablen auf diese Weise gemein-
sam gemessen werden können, da zur Erfüllung dieser Bedingung gemeinsame Eigenvektoren nötig
wären (vgl. Abschnitt 1.2).

Die Wiederholbarkeitsbedingung kann man auch als Abschwächung der Forderung betrachten, dass
eine ideale Messung den Zustand des gemessenen Systems nicht verändert: Diese Forderung wird nur
für Eigenzustände der Observablen A aufgestellt. v. Neumanns Beschreibung zeigt, dass dann gewisse
Zustände des Systems zwangsläufig verändert werden, nämlich ψ →W ′

In Abschnitt 3 werden Messungen behandelt, die auf beide Bedingungen verzichten.

Die Forderung, dass die Observable A nicht entartet ist, vereinfacht lediglich die Berechnungen, än-
dert aber nichts an den grundsätzlichen Ergebnissen. Das gilt auch für die Beschreibung der An-
fangszustände durch reine Zustände statt durch Mischungen. Die Vereinfachungen von v. Neumanns
richtungsweisender Beschreibung von [1932] finden sich auch in einem großen Teil der Literatur zum
Messproblem.

Indirekte Messungen als Ersatz für Direkte

Sowohl die Wahrscheinlichkeit des Messergebnisses als auch der Zustand des Systems nach der Mes-
sung sind bei der indirekten Messung genauso, wie es Bornsche Regel und Reduktionspostulat für
eine direkte Messung der Observablen A fordern, wenn man die indirekte Messung durch die Able-
sung der Messergebnisse, d.h. eine direkte Messung der Zeigerobservablen, abschließt. Daher ist eine
indirekte Messung ein perfekter Ersatz für eine direkte Messung.

Dies gilt auch für Interpretationen der QM, die auf das Projektionspostulat verzichten und allein die
Bornsche Regel anwenden. Die Zeigerzustände haben stets die gleiche Wahrscheinlichkeitsverteilung
wie die Werte der gemessenen Observablen, sodass ihre Ablesung äquivalente Resultate liefert.
Indirekte Messungen können natürlich nicht alle direkten Messungen ersetzen, denn die Ablesung der Zeigerzustände
durch eine direkte Messung lässt sich nicht eliminieren. Es ist allerdings möglich, mit der direkten Messung einer einzel-
nen Observablen an den Messgeräten (z.B. des Orts) auszukommen, wenn man durch passende unitäre Transformationen
(Wechselwirkungen) alle Observablen des Systems im Messprozess entsprechend transformieren kann. Ein Beispiel liefert
die Messung des Spins im Stern-Gerlach-Experument durch Ablesung des Teilchenorts. 14 So wird in der Quanteninfor-
matik oftmals nur in einer Basis von Zeigerzuständen (computational base) gemessen, die den Werten 0 und 1 der Qubits
entspricht. Alle anderen Messungen lassen sich dann mit Hilfe von unitären Transformation (“Maschinenprogrammen”)
und diesen Basismessungen durchführen (s. Mermin 2006).

v. Neumanns Kette und Heisenbergs Schnitt

Wie v. Neumann bereits zeigte, kann man das Schema der indirekten Messung iterieren, ohne dass
sich am Ergebnis etwas ändert: Die Ablesung des Zeigers an M wird wieder als indirekte Mes-
sung durchgeführt, deren Zeiger wiederum indirekt abgelesen wird, ... Wenn man Messinstrumente
M2, ...Mn betrachtet, die in einer Kette den Zeigerzustand des jeweils vorhergehenden Messinstru-
ments messen, wobei sie in der oben beschriebenen Weise paarweise miteinander wechselwirken, so
erhält man am Ende einen verschränkten Zustands des Gesamtsystems

Φ
(SMM2...Mn) = ∑

k
ckαk⊗ϕk⊗ϕ

(M2)
k ⊗ ...⊗ϕ

(Mn)
k

der durch eine Ablesung, d.h. eine direkte Messung P(Mk)
[ϕ j]

, an einem beliebigen Messinstrument Mk

der Kette “kollabiert”. Alle Messinstrumente haben danach jeweils den gleichen Zeigerzustand, der
14Die Bohmsche Interpretation der QM macht davon Gebrauch, indem sie ausschließlich die Ortskoordinate des Zeigers

als real und damit direkt ablesbar betrachtet.
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zum Messergebnis a j gehört

Φ
(SMM2...Mn)
j = α j⊗ϕ j⊗ϕ

(M2)
j ⊗ ...⊗ϕ

(Mn)
j

Die Wahrscheinlichkeit für dieses Ergebnis bleibt
∣∣c j
∣∣2.

Als Beispiel kann man die Nebelkammer betrachten: das geladene Teilchen ionisiert ein Wassermolekül, das wiederum
mit anderen Molekülen wechselwirkt, sodass ein Wassertröpfchen gebildet wird, das mit den Photonen der Beleuchtung
wechselwirkt, die ein Bild zum Beobachter tragen.

v. Neumann verfolgte diese Kette spekulativ über das Auge bis in das Nervensystem des Beobachters. Am Ende die-
ser Kette steht dann der Bewusstseinsakt der Wahrnehmung, den v. Neumann mit der Zustandsreduktion in Verbindung
brachte. Er zitiert an dieser Stelle das Prinzip des psychophysischen Parallelismus. Eine pragmatische Beschreibung dieses
Vorgangs wäre, dass der Beobachter in dem Moment, in dem er das Ergebnis der Messung erfährt, eine neue Zustands-
beschreibung des Systems für weitere Beobachtungen oder Manipulationen ansetzt. Die Änderung des Zustands durch
Reduktion wäre dann epistemisch zu interpretieren.

Es ist gleichgültig, wo in v. Neumanns Kette die direkte Messung stattfindet. Der Schnitt zwischen Beobachter und seinen
Instrumenten auf der einen Seite und dem beobachteten quantenmechanischen System auf der anderen Seite kann beliebig
verschoben werden, ohne etwas an den Resultaten zu ändern. Auf der einen Seite kollabiert der Zustand des gemessenen
Systems, auf der anderen Seite wird ein bestimmtes Ergebnis beobachtet.

Diese Vorstellung eines verschieblichen Schnitts geht auf Heisenberg (Heisenberg-cut) zurück (vgl. Heisenberg [1930]).
Allerdings betrachtete Heisenberg einen Schnitt zwischen quantenmechanischer Beschreibung des Systems und klassi-
scher Beschreibung der Messinstrumente. Die klassische Beschreibung impliziert dabei “reale” oder “objektive” Zeiger-
zustände, die unabhängig vom Beobachter bestehen (wie beispielsweise Planetenpositionen). Die Forderung, dass Expe-
rimentierapparaturen und Messgeräte im Endeffekt klassisch sein müssen, ist ein wichtiger Bestandteil der Kopenhagener
Interpretation und wurde insbesondere von Bohr immer wieder angeführt (vgl. Bohr, 1958).

Messproblem

Das Auftreten des verschränkten Zustandes Φ nach der Wechselwirkung zwischen Messinstrument
und System wird oftmals als grundlegendes Problem der QM betracht, das Messproblem.

Für Interpretationen ohne Projektionspostulat endet die Beschreibung mit diesem Zustand. Wenn man
aber tatsächlich eine Messung durchführt, liest man am Ende einen bestimmten Zeigerstand ϕ j ab und
keine Superposition. Schrödingers Katze wird an dieser Stelle oftmals angeführt und soll einen Teil
der Messvorrichtung verkörpern, wobei ihr Leben als Zeigerzustand dient.

Manche Interpretationen gehen davon aus, dass mit Erreichen des Zustands Φ bereits ein bestimmtes
Messergebnis vorliegt, auch wenn ungewiss ist, welches. Dafür sprechen experimentelle Resultate,
die am System den Zustandsübergang ψ →W ′ belegen (vgl. Hobson 2012). Diese Annahme wirft
allerdings auch Probleme auf, die wir noch behandeln werden, z.B. kann durch weitere Wechselwir-
kungen das Messergebnis wieder “gelöscht” werden (quantum eraser).

Wenn man die Wellenfunktion Φ lediglich als ein Mittel interpretiert, die Wahrscheinlichkeiten für
alle weiteren Beobachtungen an dem zusammengesetzten System zu berechnen, ist dieser Zustand Φ

unproblematisch. Mit seiner Hilfe kann berechnet werden, mit welcher Wahrscheinlichkeit man eine
lebendige oder tote Katze nach der Wechselwirkung beobachtet.

Die Voraussetzung von Beobachtungen bzw. direkten Messungen impliziert aber eine gewisse Di-
chotomie, die z.B. in der Kopenhagener Interpretation zur Forderung führt, dass Experimentierappa-
raturen und Messgeräte klassisch (d.h. superpositionsfrei) sein müssen. Für eine epistemische Inter-
pretation der Wahrscheinlichkeiten kann auch der Bewusstseinsakt der Beobachtung diese Funktion
übernehmen.

Wenn man dagegen die Bornsche Regel und entsprechende direkte Messungen nicht voraussetzt,
bleibt unklar, wie Superpositionen im Allgemeinen und der Zustand Φ im Besonderen zu interpretie-
ren ist.
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3 Widersprüche zum Projektionspostulat bei nicht-wiederholbaren
Messungen

Ein kleine Abwandlung von v. Neumanns Beschreibung ermöglicht exakte, indirekte Messungen,
die nicht dem v. Neumann/Lüders-Projektionspostulat folgen. Dazu ist nur eine Wechselwirkung nö-
tig, die durch eine unitäre Transformation U∈L (H ⊗H M) beschrieben wird, die die Wiederhol-
barkeitsbedingung nicht erfüllt, aber die Kalibrierungsbedingung (bei Pauli [1933] “ideale Messung
zweiter Art”) . D.h. aus dem Anfangszustand αk⊗ϕ0 ∈H ⊗H M des zusammengesetzten Systems,
muss sich für jedes ak ∈ σ(A) ein Endzustand der Form

U(αk⊗ϕ0) = χk⊗ϕk

ergeben, wobei die {χk ∈H } nicht näher spezifizierte Zustände des Systems S darstellen. Für den
Zustand nach der Wechselwirkung ergibt sich dann

Φ =U(ψ⊗ϕ0) = ∑
k

ckχk⊗ϕk

Nach der Bornschen Regel ergibt sich für die Wahrscheinlichkeit, den Zeigerzustand ϕ j abzulesen

pΦ(P[ϕ j]) =
〈
Φ ,1⊗P[ϕ j]Φ

〉
=
∣∣c j
∣∣2

Kollabiert das Gesamtsystem bei der Ablesung des Zeigers entsprechend de m Reduktionspostulat,

Φ →Φ j =
1∣∣c j
∣∣ (1⊗P[ϕ j]

)
Φ =

1∣∣c j
∣∣∑

k
ckχk⊗P[ϕ j]ϕk = χ j⊗ϕ j

befindet sich das gemessene System im Zustand χ j, wenn der Zeiger den Messwert a j anzeigt. Die-
se Situation steht im klaren Widerspruch zum Reduktionspostulat von v. Neumann/Lüders, wenn
[χ j] 6= [α j]; seine Anwendung kann in dieser Situation zu falschen Vorhersagen für weitere Messun-
gen führen (vgl. Ballentine, 1990;Laura and Vanni [2008]).

Die Zustände {χk ∈H } müssen nicht paarweise orthogonal sein, sie können sogar alle gleich sein
χk = χ0. Letzteres wäre z.B. bei idealen Photonendetektoren der Fall, die bei der Detektion alle Photo-
nen absorbieren und das elektromagnetische Feld im Vakuumzustand hinterlassen. Das hat zur Folge,
dass sich die Superposition der Systemzustände auf die Zeigerzustände überträgt, aber System und
Messinstrument in einem Produktzustand separiert15 werden

Φ =U(ψ⊗ϕ0) = (∑
k

ckαk)⊗ϕ0 = χ0⊗ (∑
k

ckϕk) = χ0⊗ ψ̃

Im Rahmen der Minimalinterpretation sind nicht-wiederholbare indirekte Messungen jedenfalls ge-
nauso gut wie wiederholbare Messungen dazu geeignet, mittels statistischer Versuchsreihen den Er-
wartungswert von Observablen zu ermitteln. Bei sequentiellen Messungen an einem Quantensys-
tem müssen aber entsprechend veränderte Reduktionsregeln beachtet werden. Die Anwendung der v.
Neumann-Lüders-Regel führt zu in diesem Fall einer falschen Beschreibung (vgl. Ballentine [1998],
Laura and Vanni [2008]).

Die Zeigerablesung an makroskopischen Messinstrumenten ist allerdings in der Regel wiederholbar.
Die Speicherung und wiederholbare Abrufbarkeit des Ergebnisses ist eine notwendige Bedingung für
die Verarbeitung der Messdaten. Insofern erscheint es sinnvoll, für die direkten Messungen, die als
Zeigerablesung am Ende einer v. Neumannschen Kette stehen, die Wiederholbarkeit zu fordern, selbst
dann, wenn die eigentliche Messung am System eine nicht wiederholbare ist.

15Dieser Vorgang entspricht der SWAP Operation zwischen Qubits, vgl. Nielsen and Chuang [2000]
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3.1 Indirekte Messung von POVMs, verallgemeinerte Reduktionsregeln

Man kann auch auf die Kalibrierungsbedingung verzichten und eine beliebige Wechselwirkung zwischen System und
Messinstrument zulassen. Die Zeigerzustände, die man nach der Wechselwirkung am Messinstrument ablesen kann, er-
möglichen dann immer noch Rückschlüsse auf das System. Die Ablesung der Zeigerzustände konstituiert eine verallge-
meinerte Messung, die Messung einer unscharfen Observablen, wie es z.B. auch bei der Wechselwirkung eines geladen
Teilchens mit den Wasserdampfmolekülen einer Nebelkammer der Fall ist.

Der Zustand nach der Wechselwirkung ist
Φ =U(ψ⊗ϕ0)

Die Wahrscheinlichkeit, den Zeigerzustand ϕ j abzulesen, ist nach der Bornschen Regel

p j =
〈
Φ ,1⊗P[ϕ j ]Φ

〉
=
〈
U(ψ⊗ϕ0),(1⊗P[ϕ j ])U(ψ⊗ϕ0)

〉
Der Zustand des Gesamtsystems nach der Ablesung des Zeigerzustandes ϕ j ist dann gemäß dem Reduktionspostulat

Φ j =
1
√p j

(1⊗P[ϕ j ])Φ =
1
√p j

(1⊗P[ϕ j ])U(ψ⊗ϕ0) =
1
√p j

ψ̃ j⊗ϕ j

Dadurch wird für beliebige Anfangszustände des Systems ψ ∈H implizit ein linearer Operator M j ∈L (H ) definiert
mit

ψ̃ j = M jψ

und
p j =

〈
M jψ,M jψ

〉
=
〈
ψ,M†

j M jψ
〉

Für das Produkt M†
j M j gilt daher

0 < M†
j M j ≤ 1

sodass es einen Effektoperator darstellt
M†

j M j ∈ E (H )

und p j als die Wahrscheinlichkeit interpretiert werden kann, dass der Effekt E j = M†
j M j - also die Ablesung des Zeiger-

zustands ϕ j- eintritt. Es gilt weiterhin

∑
k

M†
k Mk = 1

d.h. {M†
k Mk ∈ E (H )}k definieren ein POVM. Die Effektoperatoren müssen dabei nicht paarweise kommutieren.

Verallgemeinerte Reduktionsregel

Für den Zustand des Systems nach der Ablesung des Zeigerzustands ϕ j erhält man dann insgesamt

ψ j =
1√〈

ψ,M†
j M jψ

〉M jψ

Für Mischungen ergibt sich damit nach der Ablesung des Zeigerzustandes ϕ j

Wj =
1

tr(M†
j M jW )

M†
j WM j

Diese Reduktionsregeln für Messoperatoren umfassen alle anderen Reduktionsregeln: Für wiederholbare indirekte Mes-
sungen der Observablen A sind die Messoperatoren Mk = P[αk] =

∣∣αk
〉〈

αk
∣∣, für exakte, nicht-wiederholbare indirekte Mes-

sungen der Observablen A sind die Messoperatoren M̃k =
∣∣χk
〉〈

αk
∣∣, in beiden Fällen wird das gleiche POVM, nämlich

das von der orthogonalen Zerlegung der Einheit {P[αk]}k definierte PVM gemessen, es gilt M̃†
k M̃k =

∣∣αk
〉〈

χk
∣∣χk
〉〈

αk
∣∣ =∣∣αk

〉〈
αk
∣∣= Mk = M†

k Mk

Die Messung eines POVMs ist in gewisser Weise die allgemeinste Form der indirekten Messung: Immer wenn ein Messin-
strument auf irgendeine Weise mit dem System wechselwirkt, impliziert die Beobachtung (d.h. die direkte Messung) von
Zeigerzuständen die Messung eines POVMs. Für jedes POVM {Ek ∈ E (H )}k existieren entsprechende Messoperatoren
Mk ∈L (H ), sodass Ek = M†

k Mk, da Ek ≥ 0. Wie die Beispiele zeigen, sind die Messoperatoren aber durch das POVM
nicht eindeutig bestimmt, sondern hängen vom konkreten Messverfahren ab.

Auch diese allgemeine Reduktionsregel muss im Sinne von Abschnitt 4 nicht postuliert werden: Die bedingten Wahr-
scheinlichkeiten bzgl. einer Zeigerablesung am verschränkten Gesamtsystem ergeben für weitere Messungen die gleichen
Resultate auch ohne entsprechendes Postulat.
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4 Unmöglichkeit des Kollaps durch eine unitäre Dynamik

Die kontinuierliche, deterministische und reversible unitäre Dynamik in der quantenmechanischen
Behandlung des Messprozesses kann den diskontinuierlichen, indeterministischen und irreversiblen
Kollaps nach der v.Neumann-Lüders-Regel nicht erklären. Dieses Resultat wurde, obwohl schon lan-
ge bekannt, immer wieder in Frage gestellt, indem man verschiedene Annahmen bei der Behandlung
des Messprozesses problematisierte: Idealität und Wiederholbarkeit der Messung, den reinen Zustand
des Messinstruments, die Abgeschlossenheit des Messinstruments, die Eindeutigkeit und Orthogona-
lität der Zeigerzustände, ....

Bassi und Ghirardi [2000] zeigen, dass es auch unter sehr allgemeinen Voraussetzungen nicht mög-
lich ist, einen Kollaps bei der Messung durch lineare (unitäre) Transformationen zu erklären. Die
wichtigsten Punkte sind:

1. Das Messinstrument wird nicht isoliert betrachtet, die Umgebung wird miteinbezogen. Die Au-
toren sprechen sogar vom Universum. Es wird darin ein Messinstrument HM angenommen,
dass zu messende System H , sowie der Rest des Universums HR. Der Hilbertraum des Ge-
samtsystems - also des Universums - ist HG = H ⊗HM⊗HR.

2. Messinstrument und Umgebung müssen am Anfang einer Messung nicht immer im gleichen
Zustand sein. Es kann ein beliebiger Anfangszustand ϕ ∈ V0 ⊆HM⊗HR vorliegen, von dem
lediglich verlangt wird, dass ein makroskopischer ’Zeiger’ sich in einer Grundstellung befin-
det.16

3. Für die Wechselwirkung zwischen System, Messinstrument und Umgebung lassen sie einen
zeitabhängigen Hamiltonoperator zu, indem sie eine unitäre Transformation Ut,t ′ ∈ L (HG)
annehmen, die nicht nur von der Zeitdifferenz t− t ′ abhängt.

4. Bei der Messung einer Observablen A ∈ H , die nur zwei Werte annehmen kann σ(A) =
{+1,−1}, wird nicht gefordert, dass beim Vorliegen eines Eigenzustandes α+,α− ∈H am
System für alle Anfangszustände des Messinstruments und des Rests des Universums sich ein
bestimmter Zeigerzustand einstellt. Es wird nur verlangt, dass der Endzustand des Gesamtsys-
tems in gewissen disjunkten Mengen V+,V− ⊆HG von Zuständen liegt, die die unterschiedli-
chen Zeigerzustände repräsentieren, d.h. für alle ϕ ∈V0 gilt

UtE ,tA(α+⊗ϕ) = φ+ (4.1)

UtE ,tA(α−⊗ϕ) = φ− (4.2)

mit φ+ ∈V+,φ− ∈V−.

5. Vektoren aus verschiedenen Endzustandsmengen, d.h. unterscheidbare Zeigerzustände, wären
bei einer idealen Messung orthogonal. Die Autoren stellen die schwächere Forderung17 auf,
dass für alle φ+ ∈V+,φ− ∈V−gilt ∥∥φ+−φ−

∥∥≥√2−η (4.3)

mit einem festen positiven η � 1. Genauer: η <
√

2−1, denn dann gilt
∥∥φ+−φ−

∥∥> 1 .

16Man könnte diese Forderung vielleicht exakter formulieren, wenn man annimmt, dass alle ϕ ∈ V0 Eigenvektoren
zum Eigenwert 1 einer entsprechenden Indikatorobservablen I0 ∈P(HM ⊗HR). B&G vermeiden dies aber zugunsten
größerer Allgemeinheit.

17Für normierte φ+,φ− gilt
∥∥φ+−φ−

∥∥=√〈φ+−φ−,φ+−φ−
〉
=
√

2−2Re(
〈
φ+,φ−

〉
)≤
√

2. Bei Orthogonalität gilt〈
φ+,φ−

〉
= 0 und

∥∥φ+−φ−
∥∥=√2.
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6. Es wird nicht verlangt, dass die Endzustände faktorisieren (wie z.B. φ+ = α+⊗ϕ+).

7. Es muss sich nicht um eine wiederholbare Messung handeln.

Unter diesen Voraussetzungen gilt: Die Messung einer Superposition

ψ =
1√
2
(α++α−) (4.4)

führt für jeden Anfangszustand des Messinstruments und des Rest des Universums ϕ ∈ V0 zu einem
Endzustand φ ∈HG, der in keiner der beiden Mengen V+,V− liegt.

Beweis: Nach den Voraussetzungen gilt für jedes ϕ ∈V0 wegen der Linearität von UtE ,tA

φ =UtE ,tA(ψ⊗ϕ) =
1√
2
(φ++φ−) (4.5)

mit φ+ ∈V+,φ− ∈V−. Dabei gilt für den Abstand∥∥φ −φ−
∥∥= ∥∥ 1√

2
(φ++φ−)−φ−

∥∥= (4.6)

∥∥ 1√
2

φ++(
1√
2
−1)φ−

∥∥≤ ∥∥ 1√
2

φ+

∥∥+∥∥( 1√
2
−1)φ−

∥∥= 1√
2
+1− 1√

2
= 1 (4.7)

Dies bedeutet aber nach Punkt 5 der Voraussetzungen, dass φ /∈ V+. Analog gilt
∥∥φ − φ+

∥∥ ≤ 1 und
somit φ /∈V−.

Das Resultat überträgt sich auch auf alle Mischungen von Anfangszuständen aus V0. Die resultierende
Mischung der Endzustände besteht nur aus reinen Zuständen, die weder in V+ noch V−in liegen.

5 Unnötigkeit des Kollaps und bedingte Wahrscheinlichkeiten

v. Neumanns Argumentation für sein Projektionspostulat bei der Diskussion des Compton-Simon-
Experiments hat eine Lücke: Die sichere Wiederholung des Messergebnisses in einer zweiten Mes-
sung erzwingt den passenden Eigenzustand α ∈H des gemessenen Systems nur unter der Voraus-
ssetzung, dass man dieses System alleine betrachtet. Aber gerade nach der Wechselwirkung mit ei-
nem Messinstrument ist diese Voraussetzung fragwürdig. Befindet sich das System zusammen mit dem
Messinstrument in dem verschränkten Zustand Φ , so wird dadurch ebenfalls die sichere Wiederho-
lung des Messergebnisses garantiert, ohne dass dazu der Kollaps auf einen Eigenzustand erforderlich
ist.

Der Zustand des Gesamtsystems nach der Wechselwirkung des Systems S mit dem Messinstrument
M ist

Φ =Uψ⊗ϕk = ∑
k

ckαk⊗ϕk

Wenn man jetzt ein zweites Messinstrument M2 vom gleichen Typ mit dem System wechselwirken
lässt und diese Wechselwirkung mit U (SM2) bezeichnet, erhält man den Zustand

Φ
(SMM2) =U (SM2)Φ⊗ϕ

(M2)
0 =U (SM2)∑

k
ckαk⊗ϕk⊗ϕ

(M2)
0 = ∑

k
ckαk⊗ϕk⊗ϕ

(M2)
k
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Da beide Messinstrumente verschiedene Systeme sind, kommutieren alle Observablen A∈O(HM),B∈
O(HM2) und die Ablesung der Zeigerzustände kann in einen gemeinsamen Wahrscheinlichkeits-
raum beschrieben werden. Nach der Bornschen Regel ist die Wahrscheinlichkeit, die Zeigerzustände
ϕ j,ϕ

(M2)
k an den entsprechenden Instrumenten abzulesen, gegeben durch

p
Φ(SMM2)(P[ϕ j],P[ϕ(M2)

k ]
) =

〈
Φ

(SMM2),1(S)⊗P[ϕ j]⊗P
[ϕ

(M2)
k ]

Φ
(SMM2)

〉
= |ck|2 δ j,k

und die bedingte Wahrscheinlichkeit für den Zeigerzustand ϕ
(M2)
k am zweiten Instrument, wenn am

ersten der Zeigerzustand ϕ j abgelesen wurde

p
Φ(SMM2)(P[ϕ(M2)

k ]
|P[ϕ j]) = δ j,k

Die Wahrscheinlichkeit, zweimal das gleiche Ergebnis abzulesen, ist daher offensichtlich 1.

Mit der gleichen Methodik kann man auch die Messung anderer Observablen B ∈O mit einem zwei-
ten Instrument M̃2 betrachten. Die bedingte Wahrscheinlichkeit, den Messwert bk abzulesen, unter der
Bedingung, dass am ersten Instrument der Wert a j abgelesen wird, ist dann

p
Φ(SMM̃2)(P[ϕ(M̃2)

k ]
|P[ϕ j]) =

∣∣〈α j,βk
〉∣∣2

Es ergeben sich also an dem verschränkten Zustand Φ die gleichen bedingten Wahrscheinlichkeiten
für weitere Messergebnisse am System wie in Folge des Projektionspostulats durch den Zustands-
übergang ψ→ α j, der ja ebenfalls unter der Bedingung steht, dass der Wert a j gemessen wurde. Dies
gilt auch, wenn sich das System S nach der Messung unitär entwickelt.

Damit wird klar, wie in der Minimalinterpretation auf das Reduktionspostulat verzichtet werden kann:
Alle Messungen an einem System innerhalb eines physikalischen Experiments werden als indirekte
quantenmechanische Messungen behandelt und die Zeigerzustände der Messinstrumente am Ende des
Experiments abgelesen. Als Beispiel können Fotografien der Tröpfchenspuren in einer Nebelkammer
dienen, die Bahnen markieren, auf denen die Teilchen zum Zeitpunkt der Fotografie längst nicht mehr
zu finden sind.

Da die Ergebnisse die gleichen sind, wie sie sich aus dem Projektionspostulat ergeben, wird dieses
nicht benötigt, um das Experiment zu beschreiben. Allerdings müssen die Messinstrumente dabei
eine wichtige Bedingung erfüllen: Die Zeigerzustände müssen bis zum Ende des Experiments stabil
bleiben.

Der Kollaps kann zwar auch auf diese Weise nicht durch eine unitäre Dynamik erklärt werden, aber
die entsprechenden Wahrscheinlichkeitsverteilungen der Teilsysteme schon. Dies kann man wieder-
um als Argument für den epistemischen Charakter der quantenmechanischen Zustandsbeschreibung
sehen: Die Reduktion erfolgt aufgrund der Beobachtung des Messergebnisses nach den Regeln der
Wahrscheinlichkeitsrechnung für bedingte Wahrscheinlichkeiten.

6 Irreversibilität, Dekohärenz und klassische Messinstrumente

Mit dem verschränkten Zustand φ kann man viele Eigenschaften der Messung verstehen. Aber erst
die Reduktion, d.h. Zustandsübergang des Gesamtsystems Φ→Φ j bei der Ablesung des Messinstru-
ments, sorgt für endgültige Ergebnisse und macht den Messvorgang irreversibel.
Aus dem Zustand Φ kann man den Zustand vor der Messung wiederherstellen, wenn man die unitäre Transformation
U−1 =U† anwendet

U−1
Φ =U−1U(ψ⊗ϕ0) = ψ⊗ϕ0
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Dies ist nach der Reduktion nicht mehr möglich, wie in Abschnitt 1.5 ausgeführt. Die Anwendung von U−1 auf die
Zustände nach dem Kollaps, Φ j und WSM , führt auch nicht zum Anfangszustand sondern zu

U−1
Φ j = α j⊗ϕ0

U−1WSMU = ∑
j

∣∣c j
∣∣2P[U−1(α j⊗ϕ j)]

= ∑
j

∣∣c j
∣∣2P[α j⊗ϕ0] = (∑

j

∣∣c j
∣∣2P[α j ])⊗P[ϕ0] =W ′⊗P[ϕ0]

d.h. das Messinstrument wird in den Anfangszustand zurückversetzt, während das System den Zustand nach der Messung
behält.

Der Zustand nach dem Kollaps WSM ist separabel, die Verschränkung der Superposition Φ ist ver-
schwunden. Man kann WSM als klassische Wahrscheinlichkeitsverteilung auf den Zuständen {Φ j}
interpretieren. Als Zustand nach dem Kollaps erlaubt dieser Zustand WSM eine epistemische Interpre-
tation der Wahrscheinlichkeiten, d.h. in der Realität liegt einer der Zustände Φ j = α j⊗ϕ j (mit der
Wahrscheinlichkeit

∣∣c j
∣∣2) vor, man weiß bloß nicht welcher.

Man gelangt zu diesem Zustand WSM aber auch ohne Kollaps, wenn man einfach ein weiteres Mess-
instrument M2 hinzunimmt, das als Teil der v. Neumannschen Kette mit dem Messinstrument wech-
selwirkt oder wie in Abschn. 5 beschrieben die Messung wiederholt

Φ
(SMM2) = ∑

k
ckαk⊗ϕk⊗ϕ

(M2)
k

Betrachtet man dann den Zustand des Teilsystems SM so erhält man

trHM2
(P

Φ(SMM2)) = ∑
k

∣∣ck
∣∣2P[αk⊗ϕk] =WSM

d.h. den Zustand nach dem Kollaps. Kann man auch in diesem Fall den Zustand WSM epistemisch
interpretieren?

Das zweite Messinstrument kann auf verschiedene Art “ins Spiel gebracht” werden, z.B. durch v.
Neumanns Kette zum Beobachter, Lawineneffekte mit Mehrfachmessungen oder die Wechselwirkung
mit der Umgebung. Entscheidend ist, das ein “Fußabdruck” der Messung außerhalb von System und
primären Messinstrument erhalten bleibt.

In der Dekohärenztheorie wird dies mittels der Umgebung ausgeführt. Ein Messinstrument ist ja i.A.
kein isoliertes System, sondern steht in Wechselwirkung mit seiner Umgebung. Daher ist es nahelie-
gend, es als offenes System zu behandeln und die Dekohärenz der Zeigerzustände zu betrachten, d.h.
Zustandsübergänge, die durch die unkontrollierte Wechselwirkung mit der Umgebung zustande kom-
men (vgl. Schlosshauer, 2004). Bei der Konstruktion einer Messvorrichtung ist natürlich darauf zu
achten, dass die Ablesung der Messwerte dadurch nicht gestört werden. Für den Messprozess macht
die Dekohärenztheorie folgende Annahmen:

1. Die Zeigerzustände des Messinstruments können als räumlich lokalisierte Wellenpakete eines
Teilchens beschrieben werden.

2. Die Wechselwirkung des Messinstruments mit der Umgebung folgt wie im vorigen Kapitel in
Abschnitt 4.5 besprochen einem Dekohärenzmechanismus, der aus beliebigen Zuständen eines
Teilchens Mischungen solcher räumlich lokalisierter Wellenpakete produziert.

3. Bereits vorliegende Zeigerzustände bleiben dabei unverändert.

Die aufgeführten Bedingungen werden alle vom Wechselwirkungsschema einer wiederholbaren Mes-
sung erfüllt, wenn die Umgebung als ein Messinstrument modelliert wird, das die Zeigerobservable
des eigentlichen Messinstruments misst: Die Umgebung wird mit dem Hilbertraum HU beschrieben,
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das zusammengesetzte System aus Messinstrument und Umgebung mit dem Hilbertraum HM⊗HU ,
die Wechselwirkung durch UMU ∈ L (HM ⊗HU). Die Wechselwirkung mit der Umgebung lässt
Zeigerzustände nach Annahme 3 invariant, es gilt für alle Zeigerzustände ϕk ∈ Z

UMU(ϕk⊗ ε0) = ϕk⊗ εk

wobei εk ∈HU paarweise orthogonale Zustände der Umgebung darstellen. Mit dem Zustand Φ ∈
H ⊗HM von System und Messinstrument (2.6) ergibt sich dann als Zustand des Gesamtsystems
H ⊗HM⊗HU

Φ
(SMU) = 1(S)⊗UMU(Φ⊗ ε0) =∑

k
ckαk⊗UMU(ϕk⊗ ε0) = ∑

k
ckαk⊗ϕk⊗ εk

Reduziert auf System und Messinstrument H ⊗HM erhält man dann wieder die Mischung

WSM = trHU (P[ΦSMU ]) = ∑
k

∣∣ck
∣∣2P[αk⊗ϕk]

die am Ende des Messvorgangs nach dem Kollaps (2.8) steht und als klassische Wahrscheinlich-
keitsverteilung auf dem Produktraum der Zeigerzustände und der Eigenzustände der Observablen A
interpretiert werden kann.

Wenn man die Umgebung als unkontrollierbar betrachtet, kann dieser Zustandsübergang auch nicht
mehr rückgängig gemacht werden und ist damit praktisch irreversibel.

Natürlich bleibt zu zeigen, dass es auch konkrete Systeme gibt, die alle aufgestellten Forderungen
wenigstens näherungsweise erfüllen. In den entsprechenden theoretischen Betrachtungen wird die
Umgebung meist als zusammengesetztes System einer großen Anzahl (n→ ∞) einfacher Quanten-
systeme (wie z. B. harmonische Oszillatoren) modelliert, das sich in einem Gleichgewichtszustand
befindet und mit dem betrachteten System wechselwirkt. Diese Wechselwirkung führt dann zur Her-
ausbildung von Mischungen Gaußscher Wellenpakete für den reduzierten Systemzustand (vgl. Qures-
hi [2012]), die sich auf klassischen Teilchenbahnen bewegen. Fungiert das betrachtete System als
Messinstrument, so stellen die lokalisierten Wellenpakete die Zeigerzustände dar.

Im Beispiel des Stern-Gerlach-Experiments wird dann unter dem Einfluss der Dekohärenz aus der
Superposition

Φ = c−ϕ−⊗ζ−+ c+ϕ+⊗ζ+

die Mischung
W ′ =

∣∣c−∣∣2P[ϕ−⊗ζ−]+
∣∣c+∣∣2P[ϕ+⊗ζ+]

Das Kopenhagener Postulat, dass Messinstrumente im Endeffekt klassisch sein müssen, wird daher
im Prinzip durch die Dekohärenztheorie gestützt, wobei diese allerdings das Klassisch-Sein mittels
der Dekohärenz quantenmechanisch zu erklären versucht, indem Superpositionen von Zeigerzustän-
den in klassische Wahrscheinlichkeitsverteilungen der Zeigerpositionen umgewandelt werden. Das
Kollapspostulat der Kopenhagener Interpretation ermöglicht darüber hinaus irreversible Übergänge,
die “realen” Fakten entsprechen. Das Problem, dass jede quantenmechanische Beschreibung eines
geschlossenen Systems reversibel ist und alle Transformationen rückgängig gemacht werden können,
versucht die Dekohärenztheorie mit Hilfe der Unkontrollierbarkeit der makroskopischen Umgebung
zu lösen.

21



Literatur
L. E. Ballentine. Limitations of the projection postulate. Found. Phys., 20, 1990.

L. E. Ballentine. Quantum Mechanics: A modern Development. World Scientific, Singapore, 1998.

A. Bassi and G. Ghirardi. A General Argument Against the Universal Validity of the Superposition
Principle. Phys. Lett. A, 275, 2000.

D. Bohm. A suggested interpretation of the quantum theory in terms of ’hidden’ variables. Phys.
Rev., 85, 1952.

N. Bohr. Über Erkenntnisfragen der Quantenphysik. 1958.

W. Bothe. The Coincidence Method. Nobel lecture 1954, 1954.

W. Bothe and H. Geiger. Über das Wesen des Comptoneffekts: ein experimenteller Beitrag zur Theo-
rie der Strahlung. Z. Physik, 32, 1925.

V. B. Braginsky and F. Ya. Khalili. Quantum Measurement. Cambridge University Press, Cambridge,
1992.

H.-P. Breuer and F. Petruccione. The theory of open quantum systems. Oxford University Press,
Oxford, 2002.

P. Busch, P. J. Lahti, and P. Mittelstaedt. The Quantum Theory of Measurement. Springer-Verlag,
Berlin, 1991.

P. Busch, T. Heinonen, and P. Lahti. Heisenberg’s Uncertainty Principle. Phys. Rep. 452, 2007.

A. H. Compton. X-rays as a branch of optics. Nobel lecture December 12, 1927, 1927.

W. Heisenberg. Über den anschaulichen Gehalt der quantentheoretischen Kinematik und Mechanik.
Z. Physik, 43, 1927.

W. Heisenberg. Physikalische Prinzipien der Quantentheorie. Hirzel, 1930.

W. Heisenberg. Die Entwicklung der Deutung der Quantentheorie. Phys. Bl., 12, 1956.

A. Hobson. Re-assessment of the state of Schroedinger’s cat. 2012.

R. Laura and L. Vanni. Conditional probabilities and collapse in quantum measurements. Int. Journal
of Theor. Phys., 47, 2008.

G. Lüders. Über die Zustandsänderung durch den Messprozess. Ann. d. Physik, 1951.

G. Ludwig. Foundations of Quantum Mechanics I. Springer-Verlag, Berlin, 1983.

N. D. Mermin. In praise of measurement. Quantum Information Processing, 5, 2006.

P. Mittelstaedt. The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge
University Press, 1998.

M. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge Univer-
sity Press, 2000.

W. Pauli. Die allgemeinen Prinzipien der Wellenmechanik. Springer-Verlag, new edition 1990, Berlin,
1933.

22



T. Qureshi. Decoherence, Time Scales and Pointer States. Physica A 391, 2012.

M. Schlosshauer. Decoherence, the measurement problem, and interpretation of quantum mechanics.
Rev. Mod. Phys. 76, 2004.

J. v. Neumann. Mathematische Grundlagen der Quantenmechanik. Springer-Verlag, Berlin, 1932.

C. F. v. Weizsäcker. Aufbau der Physik. Carl Hanser Verlag, München, 1985.

23


