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Das Reduktionspostulat (auch als Projektions- bzw. Kollapspostulat bezeichnet) beschreibt die Zu-
standsiinderung eines quantenmechanischen Systems durch eine Messung. Es wird hier gesondert
behandelt, da es nicht fiir alle Interpretationen einen Bestandteil der QM darstellt (z.B. kommen Lud-
wig [[1983]], Ballentine| [[1998]] und Bohm| [[1952] ohne dieses Postulat aus).

Da es sich ausschlielich auf Messungen bezieht, ist es sinnvoll, dieses Postulat innerhalb der Mini-
malinterpretation der QM zu behandeln. Das heil3t aber nicht, dass es auch notwendiger Weise ein
Bestandteil dieser Minimalinterpretation ist, wie die bereits erwihnten Beispiele von Ludwig [[1983]
und Ballentine| [[1998]] zeigen. Es wird allerdings als ein wesentlicher Bestandteil der Kopenhagener
Interpretation der QM (vgl. Heisenberg| [[1956]) gesehen, der eng mit einem weiteren Punkt der der-
selben verbunden ist: Alle Messinstrumente miissen - genauso wie die Pripariervorrichtungen - im
Endeffekt klassisch beschrieben werden.

v. Neumann [[1932]] hat das Reduktionspostulat erstmalig als eigenstindiges Postulat aufgefiihrt, das
von Liiders| [1951] prizisiert WurdeE] Die v. Neumann/Liiders-Form des Postulats beschreibt aus-
schlieBlich wiederholbare Messungen. Schon Pauli [1933]] wies auf nicht-wiederholbare Messungen
hin, die exakte Ergebnisse liefern konnen. Mittlerweile sind verallgemeinerte Messungen unscharfer
Observablen weithin akzeptierter Bestandteil des Kanons. Fiir all diese Fille kann eine verallgemei-
nerte Reduktionsregel angeben werden (wie z.B. in Nielsen and Chuang, 2000), bei der dann aber
das Reduktionsergebnis nicht nur von der gemessenen Observable sondern auch von der jeweiligen
Messmethode abhingt.

Nach der ausfiihrlichen Darlegung des Reduktionspostulats in Abschnitt 1 gibt die Behandlung des
Messprozesses nach v. Neumann in Abschn. 2 eine Basis fiir das tiefere Verstdndnis der Zusammen-
hinge. In Abschn. 3 wird gezeigt, dass auch nicht-wiederholbare Messungen exakte Ergebnisse lie-
fern konnen, und wie eine Reduktionsregel fiir verallgemeinerte Messungen unscharfer Observablen
begriindet werden kann. In Abschn. 4 kann man sehen, dass der Kollaps im Messprozess nicht durch
die unitdre Dynamik zustande kommen kann. In Abschn. 5 wird gezeigt, wie es moglich ist, inner-
halb der Minimalinterpretation auch ohne Reduktion oder Kollaps auszukommen. In Abschn. 6 wird
gezeigt, wie die Dekohirenztheorie das in der Kopenhagener Interpretation geforderte Klassisch-Sein
der Messinstrumente sowie die Irreversibilitidt der Messung zu erklédren versucht.

1 Reduktion als Postulat

Die im vorigen Kapitel skizzierte Minimalinterpretation ermoglicht es, die Aussagen der Theorie
im Experiment zu iiberpriifen. Kernstiick dieser Minimalinterpretation ist die Bornsche Regel. Da
sich das Projektionspostulat direkt daran anschlie3t, wiederholen wir diese hier in der passenden

'Das Postulat wird oft |v. Neumann| [1932] zugeschrieben, der es wohl als erster explizit formuliert und die Konse-
quenzen erdrtet hat. Uberlegungen zur Reduktion von Wellenfunktionen finden sich aber auch schon vorher (z.B. bei
Heisenberg, [1927). Die allgemeine Form des Postulats, die auch die Messung entarteter Observablen korrekt beschreibt,
geht hingegen auf|Liiders| [[1951]] zuriick.



Form. Im Folgenden wird vorausgesetzt, dass die Observable A € & ein diskretef] Eigenwertspektrum
o(A) ={aj,az,...} C R besitzt, d.h.
A= Z aP,

aco(A)

wobei P, = P4({a}) das projektionswertige MaB der Borelmenge {a} darstellt bzw. den Projektions-
operator auf den Eigenraum von A fiir den Eigenwert a.

1.1 Bornsche Regel

Die Wahrscheinlichkeit, im Zustand W € . den Eigenwert a € 6(A) der Observablen A zu messen,
is€l
paw({a}) = u(FW)

1.2 v. Neumann/Liiders-Projektionspostulat

Wenn bei einer Messung der Observablen A im Zustand W € . der Eigenwert a € 6(A) gemessen
wird, so ist der Zustand des Systems direkt nach der Messungﬁ]
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Wp=—x<
“ (P W)
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1.3 Wiederholbarkeit und reine Zustinde

Bereits die Bornsche Regel impliziert, dass ein bestimmter Wert aus dem Spektrum der Observablen
gemessen wird. Das Projektionspostulat fordert dariiber hinaus eine Zustandsinderung am gemesse-
nen System, die im Experiment natiirlich nur dann eine Rolle spielt, wenn weitere Messungen an dem
gleichen Systenﬁ durchgefiihrt werdenﬁ

Ist der Zustand W rein, so ist es auch der Zustand W,, und man kann mit Zustandsvektoren y, y, vor
bzw. nach der Messung auch schreiben

1

Wa:mﬂﬂl’

ZFiir Observablen mit kontinuierlichem Spektrum gibt es keine wiederholbaren Messungen (vgl. Busch et al.| [1991).
Deshalb klammern wir diese im Folgenden aus.

3Die hier verwendete Form der Bornschen Regel ist eine Spezialisierung fiir Observablen mit reinem Eigenwertspek-
trum. Im vorigen Kapitel haben wir eine allgemeinere Formulierung verwendet, die auch fiir Observablen mit kontinuier-
lichen Spektrum geeignet ist.

4Geht man davon aus, dass sich der Zustand des Systems W (¢) nach Vollendung der Messung zum Zeitpunkt 7y, min-
destens fiir eine kurze Zeitspanne s im Sinne der Normtopologie stetig entwickelt, sodass es fiir jedes € > 0 eine Zeitspanne
7> 0 mit T < s gibt, in der ||W(ty + ) — W(ty)|| < €, dann ist der Zustand direkt nach der Messung niherungsweise
W(tM).

Bei zusammengesetzten Systemen ist dabei das Gesamtsystem zu betrachten, auch wenn die Messungen nur an
einzelnen Teilsystemen durchgefiihrt werden.

SFiir die Ensemble-Interpretation gibt es allerdings ein Problem: Zustinde werden nicht mit individuellen Systemen,
sondern mit Ensembles verbunden. Der Zustand des Systems nach der Messung des Wertes a kann aber als ein neues
Ensemble interpretiert werden, das nach der Messung durch Selektion aller Systeme, an denen der Wert a gemessen
wurde, aus dem alten Ensemble hervorgeht. Dies entspricht dem experimentellen Vorgehen z.B. bei der Datensammlung
mit Hilfe der Koinzidenzmethode Bothel|[[1954]].




wobei Y, ein Eigenvektor von A zu Eigenwert a ist. Man bezeichnet die Zustandsreduktion in dieser
Form auch als Kollaps der Wellenfunktiorﬂ

Der Zustand nach der Messung W, ist ein Eigenzustand der Observablen A zum Eigenwert a. Man be-
zeichnet diese Form der Messung daher auch als projektiv. Eine sofortige Wiederholung der Messung
liefert mit Sicherheit das gleiche Ergebnis a sowie erneut den gleichen Zustand W,. Die Messung ist
daher wiederholbar (bei Pauli [[1933]] “Messung erster Art”). Implizit wird dabei vorausgesetzt, dass
es sich um eine exakte Messung handelt (bei Pauli “ideale Messung”).

Wenn man nicht-wiederholbare, nicht-projektive oder nicht-ideale Messungen ebenfalls in Betracht
zieht, sollte im Postulat die Art der Messung durch ein entsprechendes Adjektiv eingeschriankt wer-
den. Allerdings hat das Postulat dann eher die Form einer Definition.

1.4 Experimentelle Begriindung: Compton-Simon Experiment

Das Musterbeispiel, das v. Neumann (1932, II1.3.) zur Begriindung des Projektionspostulats disku-
tiert, ist das Compton-Simon-Experiment (vgl. (Compton, |1927): Bei der Bestrahlung einer Folie mit
gerichteten Gamma-Strahlen werden Elektronen herausgeschlagen. Fiir die einzelnen StoBvorgin-
ge gilt der (relativistische) Energie/Impulserhaltungssatz: Die Summe der Energien und Impulse des
Elektrons und des Gammaquants vor und nach dem Stof} sind gleich. Die Austrittsrichtung des Elek-
trons ist dadurch nicht festgelegt, das Gammaquant muss aber in die passende Richtung und mit
der passenden Energie (bzw. Frequenz) abgelenkt werden, um die Energie- und Impulserhaltung zu
gewdhrleisten. Dies ldsst sich durch entsprechende Messungen am Gammaquant und am Elektron
verifizieren. Compton und Simon fotografierten entsprechende Spuren in einer Wilsonschen Nebel-
kammer; Bothe und Geiger (vgl. Bothe and Geiger, 1925, Bothel 1954)) zihlten Koinzidenzen an zwei
entsprechend ausgerichteten Teilchendetektoren.
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v. Neumann betrachtete das Experiment als die Durchfiihrung zweier aufeinanderfolgender Messun-
gen an einem System, nimlich dem Gesamtsystem Gammaquant-Elektron und folgerte, dass die erste
Messung zur Reduktion des Zustands fiihrt, sodass das Ergebnis der zweiten Messung durch den neu-
en Zustand determiniert ist, wobei die tatsdchliche Reihenfolge der Messungen keine Rolle spieltﬂ

"Der Begriff Kollaps deutet auf eine ontische Interpretation der Wellenfunktion hin. Bei einer epistemischen Interpre-
tation wird eher von Reduktion gesprochen.

8Energie und Impuls sind bei der freien Bewegung nach dem StoB ErhaltungsgroBen. Des weiteren werden Observa-
blen verschiedener Teilsysteme gemessen, die daher alle kommutieren.



1.5 Zustand nach der Messung, (In-)Determinismus und Irreversibilitit

Das Reduktionspostulat enthélt die Bedingung, dass der Wert a gemessen wurde, und postuliert daher
mit W, implizit bedingte Wahrscheinlichkeiten fiir die Ergebnisse weiterer moglicher Messungen in
einem zusammengesetzten Experiment, z.B. fiir das Ergebnis b einer weiteren Messung der Observa-
blen B mit dem PVM Pg({b}) = P,

p({b}{a}) = w(PW,) = %

Der Zustand nach der Messung W’ ohne diese Bedingung, also ohne Annahme des Ergebnisses a, ist
eine Mischung aller moglichen Zustinde W, bzw. y,, fiir alle moglichen Ergebnisse a € 6(A), wobei
die statistischen Gewichte gerade durch die Wahrscheinlichkeiten der Messergebnisse gegeben sind

W'=Y pawl{aWa= ) wRW)Wa= )} PWPF (1.1)
aco(A) acc(A) acac(A)

Dies entspricht dem Satz der totalen Wahrscheinlichkeit

r{bY)= ), p({b}{a})p({a})

acc(A)
denn
— (W) = _ y UBAWER)
p({b}) = tr(P,W') = tr(P, GZ PWP)= ) (B W) tr(P, W)
acc(A) acc(A)

Der Zustand W’ beschreibt das System nach einer Messung, wenn das Ergebnis nicht bekannt ist, z.B.
bei der Vorhersage kiinftiger Messungen. Man kann die Mischung daher epistemisch interpretieren:
in der Realitit liegt einer der Zustinde W, (mit der Wahrscheinlichkeit ps w({a})) vor, man weil}
bloB noch nicht welcher. Der Zustand W' ergibt sich aber auch auf anderem Weg in der theoretischen
Behandlung des Messprozesses (s. Abschn. [2.5).

Auch aus einem reinen Zustand W vor der Messung entsteht auf diese Weise nach der Messung eine
Mischung W' (aus Eigenzustinden von A), wenn nicht W nicht bereits ein Eigenzustand von A ist.
Fiir die Entropie gilt dabei

S(W') = 5(W)

wobei Gleichheit gilt, wenn W bereits ein Eigenzustand von A ist.

Der Zustandsiibergang W — W, ist i.A. weder deterministisch noch reversibel: Jedes a € o(A), fiir
das die Wahrscheinlichkeit ps w ({a}) = tr(P, W) groBer als 0 ist, kann gemessen werden; der zugeho-
rige Endzustand W, tritt mit der gleichen Wahrscheinlichkeit ein. Andererseits konnen verschiedene
Zustinde vor der Messung das gleiche Messergebnis a und damit auch den gleichen Zustand W, zur
Folge haben.

Belsp1elswelse konnen mit den reinen Eigenzustinden y,,,y,, mit a; # a;, die orthogonalen Zustinde \f(‘lfau + V)

ﬁ (Wa, — Wa,) beide den Zustand v, (mit Wahrscheinlichkeit Z) zur Folge haben.

Der Zustandsiibergang W — W' ist dagegen deterministisch aber i.A. nicht reversibel. Durch W und
A ist aufgrund von (1.1]) der Zustand W’ eindeutig bestimmt. Verschiedene Zustéinde vor der Messung
konnen aber den gleichen Zustand W’ zur Folge haben.

Beispielsweise haben die reinen Zustinde f (Wa, +Wa,) und f (W4, — Wa,) beide den gemischten Zustand W' = P[Wal |+
%P[%z] zur Folge.



Man bezeichnet den Ubergang W — W, auch als selektive Messungﬂ den Ubergang W — W' dagegen
als nicht-selektiv.

Beide Ubergiinge stellen messbare Zustandsinderungen dar, wenn nicht von vorneherein ein Eigenzu-
stand vorliegt. Dies kann man z.B. im Doppelspaltexperiment sehen. Die Interferenzen verschwinden,
wenn die Superposition der beiden Teilwellen durch eine Messung des Spaltes (analog zum letzten
Beispiel) in eine Mischung umgewandelt wird. Ohne Selektion nach dem Messergebnis erhilt man
dabei eine 2-Hocker-Verteilung, mit Selektion dagegen einen Hocker hinter dem selektierten Spalt.

Die Irreversibilitit dieser Zustandsiiberginge wird oft mit der Irreversibilitit eingetretener Fakten in
Zusammenhang gebracht: Jedes tatsdchlich im Labor gemessene und aufgezeichnete Ergebnis stellt
ein Faktum dar, das nicht mehr riickgéngig gemacht werden kann (vgl. v. Weizsicker, |1983).

Die zwangsldufige Verdnderung des Zustands durch Messungen spielt eine wichtige Rolle in der
technischen Anwendung durch die Quantenkryptographie, weil dadurch Abhorversuche erkannt und
verhindert werden konnen (z.B. beim BB84-Protokoll s. Nielsen and Chuang| [2000] ).

1.6 Sequentielle Messungen, Kommutativitit und Unbestimmheitsrelation

Werden kommutierende Observablen A, B sofort nacheinander wiederholbar gemessen mit den Mes-
sergebnissen a, b, so ergibt sich nach den Messungen ein gemeinsamer Eigenzustand

1

W= ———
@ (PP W)

P,P,W P,P,

Die Reihenfolge der Messungen spielt wegen der Kommutativitit von A,B bzw. P, P, keine Rolle.
Bei weiteren sofortigen Wiederholungen der Messungen werden mit Sicherheit wieder die gleichen
Ergebnisse a, b gemessen. Man kann diese Nacheinanderausfiihrung auch als gemeinsame, wiederhol-
bare Messung von A und B in einem gemeinsamen Wahrscheinlichkeitsraum (6(A) x 6(B), #(c(A) x
0(B)),pw.ap) deuten, in dem alle borelmessbaren Funktionen f : 6(A) x 6(B) — R, (a,b) — f(a,b)
von A und B als Zufallsvariablen dargestellt werden konnen. Die Marginalverteilungen der Messer-
gebnisse fiir A und B sind die gleichen wie bei exklusiven Messungen der Einzelobservablen, z.B.:

pwal{a}) =uPW) =Y pwas((a,b))= Y u(P.RW)
beo(B) beo-( )

Bei nicht-kommutierenden Observablen ist dies i.A. nicht moglich. Ohne gemeinsame Eigenzustinde
variieren die Messergebnisse mit der Reihenfolge der Messungen und streuen bei Wiederholungen.

Dies sieht man beispielsweise, wenn man sequentielle Orts- und Impulsmessungen fiir endliche Intervalle betrachtet.
Wenn Psy der Projektionsoperator auf ein Ortsintervall der GroBe Jx ist, so gilt nach einer positiven Messung (d.h.
Messergebnis 1) fiir die Streuung des Orts im reduzierten Zustand W5, nach der Messung ox < 8y, da es sich um einen
Eigenzustand von Psy handelt. Wird an diesem Zustand Wg, der Projektionsoperator Psp auf ein Impulsintervall der Groe

Op positiv gemessen, so gilt dann fiir den reduzierten Zustand Wsx sp nach der Unbestimmtheitsrelation oy > %SP. Der Ort

°In der Ensemble-Interpretation entspricht der Ubergang W — W, der Bildung eines neuen Subensembles: nimlich
das Ensemble aller Systeme, bei denen der Wert a gemessen wurde, wihrend W — W’ nur eine Transformation des
bestehenden Ensembles darstellt.



streut also nach der Impulsmessung umso stérker, je kleiner Jp ist, auch wenn vor der Impulsmessung die Streuung kleiner
als 0y war. Entsprechendes gilt umgekehrt, wenn die Reihenfolge der Messungen vertauscht wird. Die Impulsmessung
veriandert offensichtlich die Ortsverteilung. Man spricht auch von einer Storung durch die Impulsmessung und kann dafiir
ebenfalls eine “Unschirferelation” angeben (vgl. Busch et al.|[2007]).

In Spurdetektoren fiir Teilchen kann man, wie bereit im letzten Kapitel angefiihrt, einen dhnlichen Effekt beobachten: Je
hoher die Auflésung der Ortsmessungen ist, desto mehr wird die uspriingliche Teilchenbahn in eine zufillige Zickzack-
bewegung iiberfiihrt, da der Impuls immer stérker streut.

Zwar kann man fiir die Messergebnisse auch in diesem Fall einen Wahrscheinlichkeitsraum des Gesamtexperiments ange-
ben, allerdings stimmen die Marginalverteilungen der nicht-kommutierenden Observablen dann nicht mit den Verteilun-
gen fiir exklusive Messungen der Einzelobservablen iiberei, wie man es im Beispiel an den unterschiedlichen Streuungen
der Ortsmessung sieht.

1.7 Verallgemeinertes Reduktionspostulat

Das Projektionspostulat nach v.Neumann/Liiders setzt wiederholbare Messungen voraus und ignoriert nicht-wiederholbare
Messungen, die durchaus exakte Ergebnisse liefern konnen. Pauli fiithrte schon [1933|] die Unterscheidung von idea-
ler Messung erster Art (exakte Ergebnisse, wiederholbar) und idealer Messung zweiter Art (exakte Ergebnisse, nicht
wiederholbar) ein. Mittlerweile sind auch verallgemeinerte Messungen unscharfer Observablen akzeptiert, sodass eine
verallgemeinerte Form des Postulats notig ist, wenn man die Reduktion bei all diesen Messungen korrekt beschreiben
will.

Nielsen and Chuang| [2000] geben eine Form an, die einfach aus der Theorie des Messprozesses deduziert werden kann
(s. Abschn.: Fiir jedes diskrete POVM {E}. € &(.5) }« existieren Messoperatorerka € L () mit E; = M;Mk, die
eine Messung des POVM beschreiben. Tritt bei einer Messung, die durch die Operatoren {M; € .Z (7€)}, beschrieben
wird, im Zustand W € . der Effekt E; = M;M j ein, so ist der Zustand des Systems nach der Messung

Wj=—————MWM,
twr(M{M;W)

bzw. ohne Konditionierung auf ein bestimmtes Ergebnis

W'=Y u(MMW)W; =Y MIWM,
7 J

Die Messoperatoren {My € .Z ()} sind allerdings durch das POVM {E} € & ()} nicht eindeutig bestimmt. Sie
hingen von der Messmethode bzw. der konkreten Messapparatur ab. Dies gilt daher auch fiir den Zustand des Systems
nach der Messung.

Da Observablen durch ein PVM gegeben sind, umfasst diese Reduktionsregel auch das obige v. Neumann-Liiders-
Projektionspostulat: Fiir wiederholbare Messungen der Observablen A sind die Messoperatoren gerade die Projektions-
operatoren P, = M, = M = M?, sodass sich aus der verallgemeinerten Reduktionsregel die v. Neumann-Liiderssche
Regel als Spezialfall ergibt.

Weiterhin gilt: Ist die Messung eines POVMs fiir alle Zustdnde wiederholbar, so sind die Messoperatoren eindeutig be-
stimmt: es handelt sich um orthogonale Projektionsoperatoren eines PVM. Wiederholbare Messungen mit dem v. Neu-
mann/Liiderssche Projektionspostulat kdnnen also als idealisierter Grenzfall einer verallgemeinerten Messung verstanden
werden.

1.8 Bemerkungen

Wie v. Neumann (1932, V.1.) erorterte, gibt es in der Quantenmechanik grundsitzlich zwei verschie-
dene Arten der Zustandsdnderung, namlich durch

1. durch (selektive) Messung eines Wertes nach dem Reduktionspostulat: diskontinuierlich, inde-
termistisch, irreversibel

19Es handelt sich dabei um Krausoperatoren (vgl. Abschnitt iiber offene Systeme)



2. durch die unitdre Dynamik nach der Schrédingergleichung: kontinuierlich, deterministisch, re-
versibel

Der irreversible, aber deterministische Ubergang durch eine nicht-selektive Messung wird bei v. Neu-
mann nicht erwihnt. Die Frage, inwieweit der Zustandsiibergang durch Messung auf die unitdre Dy-
namik zuriickgefiihrt werden kann, werden wir weiter unten in der Theorie des Messprozesses disku-
tieren.

Wenn Messgerite als klassische Systeme betrachtet werden miissen, wie es in der Kopenhagener
Interpretation immer verlangt wird, stellt sich die Frage, wie sich die Wechselwirkung eines quan-
tenmechanischen Systems mit einem klassischen Messinstrument gestaltet. Bornsche Regel und Re-
duktionspostulat konnen diese Liicke zumindest teilweise fiillen: Das klassische Messinstrument wird
entsprechend der Bornschen Regel durch das quantenmechanische System in einen bestimmten Zei-
gerzustand versetzt, das quantenmechanische System nach der Kollapsregel in den entsprechenden
Eigenzustand; beides erfolgt mit der durch die QM vorgegebenen Wahrscheinlichkeit.

Dabei wird dies oft wesentlich allgemeiner verstanden, als es es der Begriff Messung zum Ausdruck
bringt, z.B. bemerken Landau-Lifschitz: “Unter einer Messung versteht man in der QM jeden Wech-
selwirkungsprozess zwischen einem klassischen und einem Quantenobjekt, der unabhédngig von ir-
gendeinem Beobachter abliuft.”

Die Niitzlichkeit beider Postulate fiir technische Anwendungen quantenmechanischer Systeme in-
nerhalb klassischer Maschinen ist damit offensichtlich. Im Gegensatz zur Bornschen Regel ist aber
sowohl die Giiltigkeit als auch die Notwendigkeit des Reduktionspostulats umstritten:

e Die iibliche v. Neumann/Liiders-Form des Reduktionspostulats gilt nur fiir wiederholbare Mes-
sungen. Will man das Postulat in dieser traditionellen Form korrekt formulieren, stellt sich die
Frage, inwieweit es iiber die Definition einer wiederholbaren Messung hinausgeht.

e In allgemeingiiltigen Reduktionsregeln fiir nicht-wiederholbare Messungen hédngt das Redukti-
onsergebnis von der Messmethode ab. Es stellt sich dann die Frage, welchen Nutzen und welche
Tragweite ein Reduktionspostulat hat.

e In der quantenmechanischen Theorie des Messprozesses konnen fiir sequentiell durchgefiihrte
wiederholbare Messungen die gleichen Wahrscheinlichkeitsaussagen fiir Folgemessungen auch
ohne Reduktionspostulat unmittelbar aus der unitdren Dynamik abgeleitet werden (s. Abschn.
(). Dies wirft die Frage auf, ob iiberhaupt ein Reduktionspostulat benétigt wird.

Zustandsiiberginge durch Reduktion sind allerdings im Gegensatz zur unitdren Dynamik i.A. irrever-
sibel, was der Faktizitit tatsdchlich registrierter Messergebnisse im Labor entspricht. Die Ergebnisse
unitirer Dynamik konnen dagegen stets wieder riickgingig gemacht werden, sodass darauf basierende
Ergebnisse im Prinzip nie endgiiltig sind.

Und selbst wenn man in der Systematik moglicherweise ohne ein Reduktionspostulat auskommit, ist
es doch in der fiir die jeweilige Messmethode geeigneten Form empirisch vertretbar und erméoglicht
eine vereinfachte Beschreibung des gemessenen Systems nach der Messung. Daher kann der Inhalt
des Postulats zumindest als niitzliche “Daumenregel” fiir die Anwendung in Versuchsanordnungen
bzw. technischen Vorrichtungen betrachtet werden.

2 Der Messprozess in der QM nach v. Neumann

J. v. Neumann gab [[1932] eine abstrakte quantenmechanische Beschreibung des Messprozesses als
Wechselwirkung zwischen dem zu messenden System S und einem quantenmechanischen System

7



M, das als Messinstrument fungiert. Aus einigen erwiinschten Eigenschaften einer idealen Messung
leitete er gewisse mathematische Forderungen ab, die eine abstrakte Beschreibung des Messprozesses
ermoglichen. Am Ende berechnet er ein konkretes Beispiel fiir die Ortsmessung, das zeigt, dass die
aufgestellten Forderungen - zumindest ndherungsweise - auch erfiillbar sind.

Da Messungen oder Beobachtungen in der Interpretation der QM 1.A. vorausgesetzt werden, besteht
bei der Interpretation der quantenmechanischen Behandlung des Messvorgangs eine gewisse Gefahr,
in Zirkel zu geraten. Man kann diese Gefahr entschirfen, wenn man von vorneherein eine begriffliche
Unterscheidung einfiihrt und und zwischen direkten und indirekten Messungen unterscheidet. v. Neu-
manns Messprozess beschreibt in erster Linie indirekte Messungen. Die Bornsche Regel und (je nach
Interpretation das Reduktionspostulat) sind Forderungen an direkte Messungen, deren Beschreibung
moglicherweise vollig auBerhalb der QM liegt. Bei indirekten Messungen wird ein Quantensystem
als Instrument (Sonde, Apparat) verwendet, um ein anderes Quantensystem zu untersuchen. An die-
sem Instrument wird schlieBlich eine direkte Messung vorgenommen, deren Resultat es ermoglicht,
Riickschliisse auf das andere Quantensystem zu Ziehe Diese direkte Messung wird von manchen
Autoren auch als Ablesung des Messinstruments bezeichne

Will man im Zuge einer universellen quantenmechanischen Beschreibung der Welt die direkte Messung ebenfalls quan-
tenmechanisch behandeln, so muss man im logischen Aufbau auf die Bornsche Regel (sowie das Projektionspostulat)
verzichten und erklédren, wie sie sich als Folge dieser quantenmechanischen Weltbeschreibung ergibt. Viele Publikatio-
nen kreisen daher auch um das Thema der Deduzierbarkeit der Bornschen Regel, wobei bisher keine Argumentation als
zirkelfrei akzeptiert ist . Postuliert man dagegen die Bornsche Regel, so ist fraglich, ob die zugehorige Messung dann Ge-
genstand der QM sein kann. Fiir N. Bohr mussten daher Messgerite wie auch der ganze experimentelle Rahmen klassisch,

d.h. nicht quantenmechanisch, beschrieben werden. Ein anderer Standpunkt, der v. Neumann und E. Wigner zugeordnet
wird, siedelt dagegen die direkte Messung im Beobachtungsakt des Bewusstseins an.

2.1 System, Zustand vor der Messung und gemessene Observable

Wir folgen v. Neumanns Darstellung einer indirekten Messung. Dabei iibernehmen wir die Bezeich-
nungen aus dem vorigen Abschnitt und gehen davon aus, dass das betrachtete System S im Hilber-
traum ¢ beschrieben wird und die gemessene Observable A € & beschrinkt ist und ein diskretes
Eigenwertspektrum o (A) hat, d.h.
A= aP,
aco(A)

mit Projektionsoperatoren P, € & ().{ oy € 5} sei eine Orthonormalbasis von ¢ aus Eigenvek-
toren von A, d.h. Aay = a;04. Wenn wir, wie v. Neumann [1932] zusitzlich vereinfachend davon
ausgehen, dass die Observable A nicht entartet ist, d.h. <Oc s Otk> =0=a; # ay, dann ist im Zustand
vor der Messung

Y= ch Ol
k
die Wahrscheinlichkeit p4 y({a;}) des Ereignisses {a;} € #(R) gegeben durch

pay({aj} = (v, P, v) = (¥, a)[* =|ei|?

2.2 Messinstrument

Das Messinstrument M zur Messung der Observablen A wird selbst als ein quantenmechanisches
System mit dem Hilbertraum 73, beschrieben.

Diese Unterscheidung wird z.B. in Braginsky and Khalili| [1992], Breuer and Petruccione [2002] eingenommen und
ermoglicht eine unproblematische Betrachtung der Messvorginge.
3Muittelstaedt [[1998]



Eine gewisse Menge von reinen Zustinden Z C 73, wird als Menge von Zeigerzustinden des Mess-
instruments interpretiert: sie *zeigen’ die Messergebnisse an, d.h. wenn das Messinstrument nach der
Messung im Zustand @ € Z ist, wurde ein bestimmter Wert a der Observablen A gemessen. Als zuge-
horige Zeigerobservable betrachten wir den Projektionsoperator Py, der das Ereignis représentiert,
dass das Messinstrument im zugehdrigen Zeigerzustand ¢ ist.

Fiir ein ideales Messinstrument miissen diese Zeigerzustinde Z gewisse Bedingungen erfiillen:

Eindeutigkeit und Unterscheidbarkeit

1. Eindeutigkeit der Zeigerzustinde: Die Menge der moglichen Messwerte 6(A) wird injektiv in
die Menge der Zeigerzustinde abgebildet, d.h. es gibt eine Abbildung

¢:0(A) = Z,ar — ¢(ax) = ok 2.1

bei der zu verschiedene Werten der Observablen auch verschiedene Zeigerzustinde gehdren

a; # ap = Q; # ¢ (2.2)

denn nur dann kann man anhand des Zeigerzustandes eindeutig den zugehorigen Messwert
ermitteln.

2. Sichere Unterscheidbarkeit verschiedener Zeigerzustinde: Die Zeigerzustéinde fiir verschiedene
Messwerte miissen orthogonal sein, d.h.

aj # ap = (@, ) =0 (2.3)

damit sie bei der Ablesung mit Sicherheit unterschieden werden konnen. Denn nur dann gilt im
Zeigerzustand @; fiir die Wahrscheinlichkeit des Ereignisses P,| (mit @; # @)

2
PPy .0,(1) = (0}, Plp 9i) = [{@), 0)|" =0

2.3 Wechselwirkung

Das aus dem zu messenden System und dem Messinstrument zusammengesetzte Gesamtsystem wird
im Produkthilbertraum 57 & .73, beschrieben.

Das Messinstrument befindet sich vor der Messung in einem Ausgangszustand ¢, wechselwirkt fiir
eine begrenzte Zeitspanne mit dem System. Anschlieend sind die Zustinde von System und Mess-
instrument so miteinander korreliert, dass man am Zustand des Messinstrumentes den Messwert der
zu messenden Observablen A € 0 () ablesen kann.

Die Wechselwirkung wird als unitédre Transformation U im Produktraum .7 ® .7}, beschrieben. Die
konkrete Form und Dauer dieser Wechselwirkung werden wir hier nicht angeben, genau sowenig, wie
wir die Dynamik der isolierten Systeme betrachten. Die Transformation U muss aber eine Reihe von
Bedingungen erfiillen, wenn der Wechselwirkungsvorgang fiir eine ideale Messung der Observablen
A geeignet sein soll.



Kalibrierung und Wiederholbarkeit

1. Kalibrierung (exakte Messung, ideale Messung): Fiir jeden Eigenzustand oy der Observablen A
muss das Messinstrument nach der Messung den zugehorigen Zeigerzustand ¢ anzeigen. D.h.
aus dem Anfangszustand o ® @y € 5 © ), des zusammengesetzten Systems, muss sich fiir
alle a; € o(A) ein Endzustand der Form

U0 @ Qo) = 2k © Px 24)
ergeben, wobei x; € ¢ ein nicht ndher spezifizierter Zustand des Systems & ist.

2. Wiederholbarkeit (Messung 1. Art): Ein Eigenzustand ¢y der Observablen A soll durch den
Messvorgang nicht verdndert werden. D.h. aus dem Anfangszustand oy ® @ € € @ I, des
zusammengesetzten Systems, muss sich, wenn man gleichzeitig die Kalibrierung verlangt, fiir
alle a; € o(A) der Endzustand

U(ou @ Qo) = 0 ® @k (2.5)

ergeben.

2.4 Anfangszustand

Mittels dieser geforderten Eigenschaften der Wechselwirkung ist es jetzt moglich, den Messvorgang
zu beschreiben. Das Messinstrument befindet sich vor der Messung in einem Zustand @ € 7%}, das
zu messende System in einem Zustand y € 7, dessen Entwicklung nach den Eigenvektoren der zu
messenden Observablen A durch

Y= chak
k

gegeben ist. Das Gesamtsystem .7 ® ¢y, befindet sich dann im Anfangszustand

VR@ = (Z%%) @@y =) ck(0 @ @)
% %

2.5 Verschrinkter Endzustand

Bei einer wiederholbaren Messung ergibt sich dann nach den obigen Uberlegungen wegen der Linea-
ritat von U aus diesem Anfangszustand der Endzustand

Uy @) =Y U (0 ® @) = Y 0% @ ¢
k k
Wir bezeichnen diesen Endzustand mit

D =) k04 ® P (2.6)
k

Dieser Zustand ist eine Superposition aus den verschiedenen moglichen Ergebnissen der Messung. Es
handelt sich um einen verschriankten Zustand, in dem Zeigerzustinde vom Messinstrument mit den
Eigenzustinden der Observablen A korreliert sind.

Die Wahrscheinlichkeiten der Zeigerzustinde des Messinstruments im Zustand @ werden am Ge-
samtsystem SM durch die Erwartungswerte der Projektionsoperatoren 1 ® Py, bestimmt, es gilt fiir
alle j€E IG( A)

Po(Py)) = (P, (1@ Py ) P) = e
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Die Wahrscheinlichkeit des Zeigerzustands @; ist also die gleiche, wie die Wahrscheinlichkeit des
Wertes a; der Observablen A im Zustand v, fiir alle j € I5(4)

po(Py;)) = pay({a;})

Der reduzierte Zustand des Messinstruments ist daher eine Mischung der Zeigerzustinde

Wi = ;\Ck\zf’m}

Der reduzierte Zustand des Systems ist genau W’ aus (1.1)), denn es gilt:

€, (Pr) = Lo Pl = ex

Fiir manche Interpretationen der QM endet die Beschreibung des Messvorgangs mit Erreichen des
Zustands @. Der in Abschnitt diskutierte Zustandsiibergang v — W' durch die Messung, wie er
z.B. am Doppelspalt beobachtet wird, kann mit erklart werden. Weitergehende Zusammenhénge
zwischen dem System und dem Messgerit im Zustand ¢ werden in Abschnitt [5]betrachtet.

2.6 Ablesung und Reduktion

Nach der Kopenhagener Interpretation der QM ist aber die indirekte Messung mit Erreichen des
Zustands @ noch nicht beendet@ Erst eine direkte Messung, namlich die Ablesung des Messinstru-
ments, liefert das definitive und endgiiltige Ergebnis. Fiir diese direkte Messung der Zeigerobser-
vablen werden die Postulate aus Abschnitt [T] angewendet: Nach der Bornschen Regel wird mit der
Wahrscheinlichkeit )
pa(Py)) = pay({a;}) = |cj]

der Zeigerzustand @; abgelesen, der dem Messwert a; zugeordnet ist. Nach dem Reduktionspostulat
findet unter der Bedingung, dass der Zeigerzustand @; abgelesen wird, am Gesamtsystem der folgende
Ubergang statt:

I
@ - 0= —— (18R, ) @ =

| ‘ |j‘ZCkOCk®P[ }(pk:aj®q)j
Cj

d.h. das Gesamtsystem befindet sich nach der Ablesung von @; in einem Produkitzustand mit dem
Messinstrument im Zeigerzustand @; und dem System im Eigenzustand o¢; der Observablen A.

Der Zustand des Gesamtsystems nach der Ablesung ohne Bedingung, also ohne Annahme des Ergeb-
nisses @, ist

2
Wsm = Z{C1| Plajog;) (2.8)
J
mit dem durch die Ablesung unverdinderten reduzierten Zustinde des Systems

tl‘ij(WgM) = Z‘Ck‘zp[ock] =W
k

und des Messinstruments
tr e (Wsnr) Z|Ck| P[(Pk

3Daher bezeichnen manche Autoren [Mittelstaedt [1998], Busch et al.| [1991] den Wechselwirkungsvorgang auch nur
als Premeasurement.
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2.7 Stern-Gerlach-Experiment als Beispiel

Das Stern-Gerlach-Experiment wird oft als einfaches Beispiel fiir eine indirekte Messung angefiihrt:
Der Ort, an dem das Silberatom detektiert wird, gibt Aufschluss iiber den Wert der entsprechenden
Spinkomponente. Der Spin wird dabei als eigenstindiges Quantensystem betrachtet, wihrend der
Massenmittelpunkt des Atoms als Teilchen das Messinstrument darstellt. Die Detektion des Teilchen-
orts entspricht der Ablesung der Zeigerkoordinate.

08l I
‘po®é’ v + + +

Das Teilchen hat am Anfang den Zustand ¢p- ein Wellenpaket, dass sich quasi-klassisch geradlinig
gleichformig bewegt - wihrend das zu messende Spinsystem den unbekannten Zustand § hat. Bei
der Passage des inhomogenen Magnetfelds findet eine kurze Wechselwirkung statt, die nach Kapitel
“Grundprinzipien der Quantenmechanik”, Abschnitt 4.8. durch den Hamiltonoperator H = ﬁPz +
gS.B; bzw. die unitire Transformation

U= exp(—%th)

beschrieben wird, wobei #,, die Zeitdauer der Wechselweikung angibt. Fiir die Spinzusténde {; bzw.
{_ergibt sich dabei eine Ablenkung in positiver oder negativer Richtung. Dies ist gerade die Eichbe-
dingung.

Die Detektion des Teilchenorts findet am Schirm D statt. Dabei wird angenommen, dass die Wahr-
scheinlichkeiten dafiir, dass das abgelenkte Wellenpaket ¢ im Bereich + bzw. das abgelenkte Wel-
lenpaket ¢@_ im Bereich - detektiert wird, nahe bei 1 liegen. Befindet sich das Spinsystem am Anfang
in einem Superpositionszustand

C=cC +ci &y

so 1st der Zustand vor der Detektion
P=c_ - +cipr @,

Die Wahrscheinlichkeit p bzw. p_, das Teilchen im entsprechenden Bereich zu detektieren, ergibt
sich dann aus den Betragsquadraten der Komponenten wie erwartet zu

2 2
P+ = ‘CH » P— = ‘07‘

2.8 Bemerkungen
v. Neumanns Bedingungen

Die Orthogonalitit der Zeigerzustinde ist oftmals nur ndherungsweise gegeben, wie die iiberlappen-
den Wellenpakte im Stern-Gerlach-Experiment zeigen. Die Kalibrierung garantiert die ‘“Exaktheit”
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der Messergebnisse. Man sieht sofort, dass nur kommutierende Observablen auf diese Weise gemein-
sam gemessen werden konnen, da zur Erfiillung dieser Bedingung gemeinsame Eigenvektoren nétig
wiren (vgl. Abschnitt 1.2).

Die Wiederholbarkeitsbedingung kann man auch als Abschwichung der Forderung betrachten, dass
eine ideale Messung den Zustand des gemessenen Systems nicht verdndert: Diese Forderung wird nur
fiir Eigenzustdnde der Observablen A aufgestellt. v. Neumanns Beschreibung zeigt, dass dann gewisse
Zustinde des Systems zwangsliufig verindert werden, nimlich y — W'

In Abschnitt 3| werden Messungen behandelt, die auf beide Bedingungen verzichten.

Die Forderung, dass die Observable A nicht entartet ist, vereinfacht lediglich die Berechnungen, én-
dert aber nichts an den grundsitzlichen Ergebnissen. Das gilt auch fiir die Beschreibung der An-
fangszustinde durch reine Zusténde statt durch Mischungen. Die Vereinfachungen von v. Neumanns
richtungsweisender Beschreibung von [1932] finden sich auch in einem groB3en Teil der Literatur zum
Messproblem.

Indirekte Messungen als Ersatz fiir Direkte

Sowohl die Wahrscheinlichkeit des Messergebnisses als auch der Zustand des Systems nach der Mes-
sung sind bei der indirekten Messung genauso, wie es Bornsche Regel und Reduktionspostulat fiir
eine direkte Messung der Observablen A fordern, wenn man die indirekte Messung durch die Able-
sung der Messergebnisse, d.h. eine direkte Messung der Zeigerobservablen, abschliet. Daher ist eine
indirekte Messung ein perfekter Ersatz fiir eine direkte Messung.

Dies gilt auch fiir Interpretationen der QM, die auf das Projektionspostulat verzichten und allein die
Bornsche Regel anwenden. Die Zeigerzustinde haben stets die gleiche Wahrscheinlichkeitsverteilung
wie die Werte der gemessenen Observablen, sodass ihre Ablesung dquivalente Resultate liefert.

Indirekte Messungen konnen natiirlich nicht alle direkten Messungen ersetzen, denn die Ablesung der Zeigerzustinde
durch eine direkte Messung lisst sich nicht eliminieren. Es ist allerdings moglich, mit der direkten Messung einer einzel-

nen Observablen an den Messgeriten (z.B. des Orts) auszukommen, wenn man durch passende unitdre Transformationen
(Wechselwirkungen) alle Observablen des Systems im Messprozess entsprechend transformieren kann. Ein Beispiel liefert

die Messung des Spins im Stern-Gerlach-Experument durch Ablesung des Teilchenorts. E So wird in der Quanteninfor-
matik oftmals nur in einer Basis von Zeigerzustinden (computational base) gemessen, die den Werten 0 und 1 der Qubits
entspricht. Alle anderen Messungen lassen sich dann mit Hilfe von unitiren Transformation (“Maschinenprogrammen’)
und diesen Basismessungen durchfiihren (s. Mermin/2006).

v. Neumanns Kette und Heisenbergs Schnitt

Wie v. Neumann bereits zeigte, kann man das Schema der indirekten Messung iterieren, ohne dass
sich am Ergebnis etwas dndert: Die Ablesung des Zeigers an M wird wieder als indirekte Mes-
sung durchgefiihrt, deren Zeiger wiederum indirekt abgelesen wird, ... Wenn man Messinstrumente
M,,...M,, betrachtet, die in einer Kette den Zeigerzustand des jeweils vorhergehenden Messinstru-
ments messen, wobei sie in der oben beschriebenen Weise paarweise miteinander wechselwirken, so
erhilt man am Ende einen verschrinkten Zustands des Gesamtsystems

P(SMM2.- M, chak®¢k®¢15 )g.. ®‘P;§ ”

(M)

der Kette “kollabiert”. Alle Messinstrumente haben danach jeweils den gleichen Zeigerzustand, der

der durch eine Ablesung, d.h. eine direkte Messung P[ , an einem beliebigen Messinstrument M,

14Die Bohmsche Interpretation der QM macht davon Gebrauch, indem sie ausschlieBlich die Ortskoordinate des Zeigers
als real und damit direkt ablesbar betrachtet.
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zum Messergebnis a; gehort

(pJ(SMMZ...Mn) — (Pj®(PJ(-M2) 2.8 (pJ(Mn)

Die Wahrscheinlichkeit fiir dieses Ergebnis bleibt |c j‘z_

Als Beispiel kann man die Nebelkammer betrachten: das geladene Teilchen ionisiert ein Wassermolekiil, das wiederum
mit anderen Molekiilen wechselwirkt, sodass ein Wassertropfchen gebildet wird, das mit den Photonen der Beleuchtung
wechselwirkt, die ein Bild zum Beobachter tragen.

v. Neumann verfolgte diese Kette spekulativ iiber das Auge bis in das Nervensystem des Beobachters. Am Ende die-
ser Kette steht dann der Bewusstseinsakt der Wahrnehmung, den v. Neumann mit der Zustandsreduktion in Verbindung
brachte. Er zitiert an dieser Stelle das Prinzip des psychophysischen Parallelismus. Eine pragmatische Beschreibung dieses
Vorgangs wire, dass der Beobachter in dem Moment, in dem er das Ergebnis der Messung erfihrt, eine neue Zustands-
beschreibung des Systems fiir weitere Beobachtungen oder Manipulationen ansetzt. Die Anderung des Zustands durch
Reduktion wire dann epistemisch zu interpretieren.

Es ist gleichgiiltig, wo in v. Neumanns Kette die direkte Messung stattfindet. Der Schnitt zwischen Beobachter und seinen
Instrumenten auf der einen Seite und dem beobachteten quantenmechanischen System auf der anderen Seite kann beliebig
verschoben werden, ohne etwas an den Resultaten zu dndern. Auf der einen Seite kollabiert der Zustand des gemessenen
Systems, auf der anderen Seite wird ein bestimmtes Ergebnis beobachtet.

Diese Vorstellung eines verschieblichen Schnitts geht auf Heisenberg (Heisenberg-cut) zuriick (vgl. Heisenberg) [[1930]).
Allerdings betrachtete Heisenberg einen Schnitt zwischen quantenmechanischer Beschreibung des Systems und klassi-
scher Beschreibung der Messinstrumente. Die klassische Beschreibung impliziert dabei “reale” oder “objektive” Zeiger-
zustiinde, die unabhiingig vom Beobachter bestehen (wie beispielsweise Planetenpositionen). Die Forderung, dass Expe-
rimentierapparaturen und Messgerite im Endeffekt klassisch sein miissen, ist ein wichtiger Bestandteil der Kopenhagener
Interpretation und wurde insbesondere von Bohr immer wieder angefiihrt (vgl. Bohrj |1958)).

Messproblem

Das Auftreten des verschriankten Zustandes & nach der Wechselwirkung zwischen Messinstrument
und System wird oftmals als grundlegendes Problem der QM betracht, das Messproblem.

Fiir Interpretationen ohne Projektionspostulat endet die Beschreibung mit diesem Zustand. Wenn man
aber tatséchlich eine Messung durchfiihrt, liest man am Ende einen bestimmten Zeigerstand ¢; ab und
keine Superposition. Schrodingers Katze wird an dieser Stelle oftmals angefiihrt und soll einen Teil
der Messvorrichtung verkorpern, wobei ihr Leben als Zeigerzustand dient.

Manche Interpretationen gehen davon aus, dass mit Erreichen des Zustands @ bereits ein bestimmtes
Messergebnis vorliegt, auch wenn ungewiss ist, welches. Dafiir sprechen experimentelle Resultate,
die am System den Zustandsiibergang v — W’ belegen (vgl. Hobson|2012). Diese Annahme wirft
allerdings auch Probleme auf, die wir noch behandeln werden, z.B. kann durch weitere Wechselwir-
kungen das Messergebnis wieder “geloscht” werden (quantum eraser).

Wenn man die Wellenfunktion & lediglich als ein Mittel interpretiert, die Wahrscheinlichkeiten fiir
alle weiteren Beobachtungen an dem zusammengesetzten System zu berechnen, ist dieser Zustand &
unproblematisch. Mit seiner Hilfe kann berechnet werden, mit welcher Wahrscheinlichkeit man eine
lebendige oder tote Katze nach der Wechselwirkung beobachtet.

Die Voraussetzung von Beobachtungen bzw. direkten Messungen impliziert aber eine gewisse Di-
chotomie, die z.B. in der Kopenhagener Interpretation zur Forderung fiihrt, dass Experimentierappa-
raturen und Messgerite klassisch (d.h. superpositionsfrei) sein miissen. Fiir eine epistemische Inter-
pretation der Wahrscheinlichkeiten kann auch der Bewusstseinsakt der Beobachtung diese Funktion
tibernehmen.

Wenn man dagegen die Bornsche Regel und entsprechende direkte Messungen nicht voraussetzt,
bleibt unklar, wie Superpositionen im Allgemeinen und der Zustand & im Besonderen zu interpretie-
ren ist.
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3 Widerspriiche zum Projektionspostulat bei nicht-wiederholbaren
Messungen

Ein kleine Abwandlung von v. Neumanns Beschreibung ermoglicht exakte, indirekte Messungen,
die nicht dem v. Neumann/Liiders-Projektionspostulat folgen. Dazu ist nur eine Wechselwirkung no-
tig, die durch eine unitire Transformation Ue .2 (7 ® ¢ ,,) beschrieben wird, die die Wiederhol-
barkeitsbedingung nicht erfiillt, aber die Kalibrierungsbedingung (bei Pauli [1933] “ideale Messung
zweiter Art”) . D.h. aus dem Anfangszustand o ® @y € € ® 7, des zusammengesetzten Systems,
muss sich fiir jedes a; € 0(A) ein Endzustand der Form

U(o4 ® @o) = Xk ® Pk

ergeben, wobei die {y; € 7} nicht niher spezifizierte Zustdnde des Systems & darstellen. Fiir den
Zustand nach der Wechselwirkung ergibt sich dann

D =U(y2) =Y cxXx® P
P

Nach der Bornschen Regel ergibt sich fiir die Wahrscheinlichkeit, den Zeigerzustand @; abzulesen
2
pa(Pg,)) = (P, 1@ Py @) = |c)|
Kollabiert das Gesamtsystem bei der Ablesung des Zeigers entsprechend de m Reduktionspostulat,

1 1
D — D)= o)l (1 ®P[‘Pj]> = H;Cka@@P[m‘Pk =Xi®Q;
befindet sich das gemessene System im Zustand y;, wenn der Zeiger den Messwert a; anzeigt. Die-
se Situation steht im klaren Widerspruch zum Reduktionspostulat von v. Neumann/Liiders, wenn
(%] # [o]; seine Anwendung kann in dieser Situation zu falschen Vorhersagen fiir weitere Messun-
gen fiihren (vgl. Ballentinel 1990;Laura and Vanni [2008])).

Die Zustinde {x; € 2’} miissen nicht paarweise orthogonal sein, sie konnen sogar alle gleich sein
Xr = Xo- Letzteres wire z.B. bei idealen Photonendetektoren der Fall, die bei der Detektion alle Photo-
nen absorbieren und das elektromagnetische Feld im Vakuumzustand hinterlassen. Das hat zur Folge,
dass sich die Superposition der Systemzustinde auf die Zeigerzustinde iibertrdgt, aber System und
Messinstrument in einem Produktzustand separiertE] werden

D=U(y®@ep)= (chak)®¢0 2%0®(chfpk) =XoQ®y
k k

Im Rahmen der Minimalinterpretation sind nicht-wiederholbare indirekte Messungen jedenfalls ge-
nauso gut wie wiederholbare Messungen dazu geeignet, mittels statistischer Versuchsreihen den Er-
wartungswert von Observablen zu ermitteln. Bei sequentiellen Messungen an einem Quantensys-
tem miissen aber entsprechend verdnderte Reduktionsregeln beachtet werden. Die Anwendung der v.
Neumann-Liiders-Regel fiihrt zu in diesem Fall einer falschen Beschreibung (vgl. Ballentine, [1998]],
Laura and Vanni| [2008]]).

Die Zeigerablesung an makroskopischen Messinstrumenten ist allerdings in der Regel wiederholbar.
Die Speicherung und wiederholbare Abrufbarkeit des Ergebnisses ist eine notwendige Bedingung fiir
die Verarbeitung der Messdaten. Insofern erscheint es sinnvoll, fiir die direkten Messungen, die als
Zeigerablesung am Ende einer v. Neumannschen Kette stehen, die Wiederholbarkeit zu fordern, selbst
dann, wenn die eigentliche Messung am System eine nicht wiederholbare ist.

SDieser Vorgang entspricht der SWAP Operation zwischen Qubits, vgl. [Nielsen and Chuang|[2000]
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3.1 Indirekte Messung von POVMs, verallgemeinerte Reduktionsregeln

Man kann auch auf die Kalibrierungsbedingung verzichten und eine beliebige Wechselwirkung zwischen System und
Messinstrument zulassen. Die Zeigerzustidnde, die man nach der Wechselwirkung am Messinstrument ablesen kann, er-
moglichen dann immer noch Riickschliisse auf das System. Die Ablesung der Zeigerzustinde konstituiert eine verallge-
meinerte Messung, die Messung einer unscharfen Observablen, wie es z.B. auch bei der Wechselwirkung eines geladen
Teilchens mit den Wasserdampfmolekiilen einer Nebelkammer der Fall ist.

Der Zustand nach der Wechselwirkung ist
P =U(y® )

Die Wahrscheinlichkeit, den Zeigerzustand ¢; abzulesen, ist nach der Bornschen Regel

Pi=(@,10 Py ®) = (U(y@p),(10P,))U(Y2g))

Der Zustand des Gesamtsystems nach der Ablesung des Zeigerzustandes @; ist dann gemifl dem Reduktionspostulat

1 1 1
Pj=——(10Py))P=—(12Ry NDU (VO @) = ——V; 9,
J P [‘P/] \/ITJ [(P_/] \/p7 J J

Dadurch wird fiir beliebige Anfangszustinde des Systems y € .7 implizit ein linearer Operator M; € £ (4¢) definiert
mit

Vi =My
und
pi = My, Myy) = (y. M M;y)
Fiir das Produkt M;M ; gilt daher
0<MM;<1
sodass es einen Effektoperator darstellt
MiM; € &(H)

und p; als die Wahrscheinlichkeit interpretiert werden kann, dass der Effekt E; = MJTM ; - also die Ablesung des Zeiger-
zustands @;- eintritt. Es gilt weiterhin

Y MM =1
k

dh. {M Z My € &(H)}y definieren ein POVM. Die Effektoperatoren miissen dabei nicht paarweise kommutieren.

Verallgemeinerte Reduktionsregel

Fiir den Zustand des Systems nach der Ablesung des Zeigerzustands ¢; erhélt man dann insgesamt

Y= ————=M
<‘/’»Mij‘l’>

Fiir Mischungen ergibt sich damit nach der Ablesung des Zeigerzustandes @;

1

i TiM]TWMj
tr(M]M;W)

Diese Reduktionsregeln fiir Messoperatoren umfassen alle anderen Reduktionsregeln: Fiir wiederholbare indirekte Mes-
sungen der Observablen A sind die Messoperatoren M;, = P[ak] = ’ ock> <Ock , fiir exakte, nicht-wiederholbare indirekte Mes-

, in beiden Fillen wird das gleiche POVM, nidmlich
das von der orthogonalen Zerlegung der Einheit {P, } definierte PVM gemessen, es gilt M, My = | i) (x| e ) (0| =
)| = v =

sungen der Observablen A sind die Messoperatoren M), = ‘ xk><ock

Die Messung eines POVMs ist in gewisser Weise die allgemeinste Form der indirekten Messung: Immer wenn ein Messin-
strument auf irgendeine Weise mit dem System wechselwirkt, impliziert die Beobachtung (d.h. die direkte Messung) von
Zeigerzustinden die Messung eines POVMs. Fiir jedes POVM {E}, € & (%)} existieren entsprechende Messoperatoren
My € £ (), sodass E = M;Mk, da E; > 0. Wie die Beispiele zeigen, sind die Messoperatoren aber durch das POVM
nicht eindeutig bestimmt, sondern hingen vom konkreten Messverfahren ab.

Auch diese allgemeine Reduktionsregel muss im Sinne von Abschnitt 4 nicht postuliert werden: Die bedingten Wahr-
scheinlichkeiten bzgl. einer Zeigerablesung am verschrinkten Gesamtsystem ergeben fiir weitere Messungen die gleichen
Resultate auch ohne entsprechendes Postulat.
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4 Unmoglichkeit des Kollaps durch eine unitire Dynamik

Die kontinuierliche, deterministische und reversible unitdre Dynamik in der quantenmechanischen
Behandlung des Messprozesses kann den diskontinuierlichen, indeterministischen und irreversiblen
Kollaps nach der v.Neumann-Liiders-Regel nicht erkldren. Dieses Resultat wurde, obwohl schon lan-
ge bekannt, immer wieder in Frage gestellt, indem man verschiedene Annahmen bei der Behandlung
des Messprozesses problematisierte: Idealitit und Wiederholbarkeit der Messung, den reinen Zustand
des Messinstruments, die Abgeschlossenheit des Messinstruments, die Eindeutigkeit und Orthogona-
litdt der Zeigerzusténde, ....

Bassi und Ghirardi [2000] zeigen, dass es auch unter sehr allgemeinen Voraussetzungen nicht mog-
lich ist, einen Kollaps bei der Messung durch lineare (unitire) Transformationen zu erkldren. Die
wichtigsten Punkte sind:

1. Das Messinstrument wird nicht isoliert betrachtet, die Umgebung wird miteinbezogen. Die Au-
toren sprechen sogar vom Universum. Es wird darin ein Messinstrument .73, angenommen,
dass zu messende System .77, sowie der Rest des Universums .7#%. Der Hilbertraum des Ge-
samtsystems - also des Universums - ist G = 7 ® Ay Q Hg.

2. Messinstrument und Umgebung miissen am Anfang einer Messung nicht immer im gleichen
Zustand sein. Es kann ein beliebiger Anfangszustand ¢ € Vy C 74} ® ¢ vorliegen, von dem
lediglich verlangt wird, dass ein makroskopischer *Zeiger’ sich in einer Grundstellung befin-

det@

3. Fiir die Wechselwirkung zwischen System, Messinstrument und Umgebung lassen sie einen
zeitabhingigen Hamiltonoperator zu, indem sie eine unitdre Transformation U,y € £ ()
annehmen, die nicht nur von der Zeitdifferenz ¢ — ¢’ abhiingt.

4. Bei der Messung einer Observablen A € J7, die nur zwei Werte annehmen kann ¢(A) =
{+1,—1}, wird nicht gefordert, dass beim Vorliegen eines Eigenzustandes o, a_ € 7 am
System fiir alle Anfangszustinde des Messinstruments und des Rests des Universums sich ein
bestimmter Zeigerzustand einstellt. Es wird nur verlangt, dass der Endzustand des Gesamtsys-
tems in gewissen disjunkten Mengen V,,V_ C J7; von Zustianden liegt, die die unterschiedli-
chen Zeigerzustinde reprisentieren, d.h. fiir alle ¢ € Vj gilt

U ia (04 @ @) = 9 4.1)

Upiy(0-®@ Q) = ¢ (4.2)
mit ¢4 €V, ¢9_cV_.

5. Vektoren aus verschiedenen Endzustandsmengen, d.h. unterscheidbare Zeigerzustinde, wiren
bei einer idealen Messung orthogonal. Die Autoren stellen die schwichere Forderun auf,
dass fiir alle ¢, € V4, ¢_ € V_gilt

¢+ —9¢-|| >Vv2—n (4.3)

mit einem festen positiven 1 < 1. Genauer: 7 < v/2 — 1, denn dann gilt ||q)+ —0_ H >1.

1Man konnte diese Forderung vielleicht exakter formulieren, wenn man annimmt, dass alle ¢ € V; Eigenvektoren
zum Eigenwert 1 einer entsprechenden Indikatorobservablen Iy € (4 ® #z). B&G vermeiden dies aber zugunsten
groBerer Allgemeinheit.

7Fiir normierte ¢, ¢ gilt || ¢, —¢_|| = \/<¢+ — ¢ 0 —¢ )= \/2 —2Re({¢,¢_)) < /2. Bei Orthogonaliti gilt
(¢1,0-)=0und |[¢; —¢_|| = V2.
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6. Es wird nicht verlangt, dass die Endzustinde faktorisieren (wie z.B. ¢+ = o4 ® ¢).

7. Es muss sich nicht um eine wiederholbare Messung handeln.

Unter diesen Voraussetzungen gilt: Die Messung einer Superposition

1
V= E(‘h*‘“—) (4.4)

fiihrt fiir jeden Anfangszustand des Messinstruments und des Rest des Universums @ € Vy zu einem
Endzustand ¢ € 5, der in keiner der beiden Mengen V.., V_ liegt.

Beweis: Nach den Voraussetzungen gilt fiir jedes ¢ € Vo wegen der Linearitit von Uy, ;,
¢ =Upp(Yy@0) = 7(¢++¢ ) (4.5)
mit ¢4 € V., ¢_ € V_. Dabei gilt fiir den Abstand

1
H¢—¢f||=HE(¢++¢7>—¢7H= (4.6)

1 1

+( < + -1 ||=—4+1-——F42=1 4.7
H\ﬂm f Do-| < ||f¢+H H W-l=75+1-75 (4.7)
Dies bedeutet aber nach Punkt |5|der Voraussetzungen, dass ¢ ¢ V... Analog gilt H(]) — ¢+|| <1 und
somit ¢ ¢ V_.

Das Resultat iibertréagt sich auch auf alle Mischungen von Anfangszustinden aus V. Die resultierende
Mischung der Endzustiéinde besteht nur aus reinen Zustdnden, die weder in V. noch V_in liegen.

5 Unnotigkeit des Kollaps und bedingte Wahrscheinlichkeiten

v. Neumanns Argumentation fiir sein Projektionspostulat bei der Diskussion des Compton-Simon-
Experiments hat eine Liicke: Die sichere Wiederholung des Messergebnisses in einer zweiten Mes-
sung erzwingt den passenden Eigenzustand o € 77 des gemessenen Systems nur unter der Voraus-
ssetzung, dass man dieses System alleine betrachtet. Aber gerade nach der Wechselwirkung mit ei-
nem Messinstrument ist diese Voraussetzung fragwiirdig. Befindet sich das System zusammen mit dem
Messinstrument in dem verschrinkten Zustand P, so wird dadurch ebenfalls die sichere Wiederho-
lung des Messergebnisses garantiert, ohne dass dazu der Kollaps auf einen Eigenzustand erforderlich
ist.

Der Zustand des Gesamtsystems nach der Wechselwirkung des Systems S mit dem Messinstrument
M ist
P=UYRQ =) ck0h® P
k

Wenn man jetzt ein zweites Messinstrument M, vom gleichen Typ mit dem System wechselwirken
lasst und diese Wechselwirkung mit U (SM2) bezeichnet, erhdlt man den Zustand

PSMM2) _ 17(SM2) p (p(()M 2) _ y(Sma) chock ® P @ (PO ZCkOCk QP ® (PIE ?
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Da beide Messinstrumente verschiedene Systeme sind, kommutieren alle Observablen A € O'(.#3),B €
O(7y,) und die Ablesung der Zeigerzustinde kann in einen gemeinsamen Wahrscheinlichkeits-
raum beschrieben werden. Nach der Bornschen Regel ist die Wahrscheinlichkeit, die Zeigerzustinde

0;, (p,EMz) an den entsprechenden Instrumenten abzulesen, gegeben durch

p,I,(SMMZ)(P[(pj},P (Mz)]) — <q)(SMM2)7 1) ®P[<pj] ®P(p,£M2) ¢(SMM2)> _ ‘Ck’2 5k

[ (o]
und die bedingte Wahrscheinlichkeit fiir den Zeigerzustand (p,EMz) am zweiten Instrument, wenn am
ersten der Zeigerzustand ¢; abgelesen wurde

Papiswniy) (P o) | Pigy)) = 8k

Die Wahrscheinlichkeit, zweimal das gleiche Ergebnis abzulesen, ist daher offensichtlich 1.

Mit der gleichen Methodik kann man auch die Messung anderer Observablen B € &' mit einem zwei-
ten Instrument M, betrachten. Die bedingte Wahrscheinlichkeit, den Messwert by abzulesen, unter der
Bedingung, dass am ersten Instrument der Wert a; abgelesen wird, ist dann

Pty (P ) | Foy)) = (e, Bi)|

Es ergeben sich also an dem verschriankten Zustand & die gleichen bedingten Wahrscheinlichkeiten
fiir weitere Messergebnisse am System wie in Folge des Projektionspostulats durch den Zustands-
libergang ¥ — @, der ja ebenfalls unter der Bedingung steht, dass der Wert a; gemessen wurde. Dies
gilt auch, wenn sich das System S nach der Messung unitiir entwickelt.

Damit wird klar, wie in der Minimalinterpretation auf das Reduktionspostulat verzichtet werden kann:
Alle Messungen an einem System innerhalb eines physikalischen Experiments werden als indirekte
quantenmechanische Messungen behandelt und die Zeigerzustinde der Messinstrumente am Ende des
Experiments abgelesen. Als Beispiel konnen Fotografien der Tropfchenspuren in einer Nebelkammer
dienen, die Bahnen markieren, auf denen die Teilchen zum Zeitpunkt der Fotografie 1angst nicht mehr
zu finden sind.

Da die Ergebnisse die gleichen sind, wie sie sich aus dem Projektionspostulat ergeben, wird dieses
nicht benotigt, um das Experiment zu beschreiben. Allerdings miissen die Messinstrumente dabei

eine wichtige Bedingung erfiillen: Die Zeigerzustinde miissen bis zum Ende des Experiments stabil
bleiben.

Der Kollaps kann zwar auch auf diese Weise nicht durch eine unitdre Dynamik erklédrt werden, aber
die entsprechenden Wahrscheinlichkeitsverteilungen der Teilsysteme schon. Dies kann man wieder-
um als Argument fiir den epistemischen Charakter der quantenmechanischen Zustandsbeschreibung
sehen: Die Reduktion erfolgt aufgrund der Beobachtung des Messergebnisses nach den Regeln der
Wabhrscheinlichkeitsrechnung fiir bedingte Wahrscheinlichkeiten.

6 Irreversibilitit, Dekohirenz und klassische Messinstrumente

Mit dem verschrinkten Zustand ¢ kann man viele Eigenschaften der Messung verstehen. Aber erst
die Reduktion, d.h. Zustandsiibergang des Gesamtsystems ¢ — @; bei der Ablesung des Messinstru-
ments, sorgt fiir endgiiltige Ergebnisse und macht den Messvorgang irreversibel.
Aus dem Zustand @ kann man den Zustand vor der Messung wiederherstellen, wenn man die unitidre Transformation
U~!' = U anwendet

U''e=U"Ulyoa@)=ya¢
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Dies ist nach der Reduktion nicht mehr moglich, wie in Abschnitt ausgefiihrt. Die Anwendung von U~! auf die
Zustdnde nach dem Kollaps, @; und Wy, fiihrt auch nicht zum Anfangszustand sondern zu

U'®d;=a;@ e
U~ WU = Y |ei*Py-(aegy) = Llei Pajon) = (Llei Pay) © Py = W' © Py,
J J J

d.h. das Messinstrument wird in den Anfangszustand zuriickversetzt, wiahrend das System den Zustand nach der Messung
behilt.

Der Zustand nach dem Kollaps Wgy, ist separabel, die Verschriankung der Superposition & ist ver-
schwunden. Man kann Wy, als klassische Wahrscheinlichkeitsverteilung auf den Zustinden {®;}
interpretieren. Als Zustand nach dem Kollaps erlaubt dieser Zustand Wy, eine epistemische Interpre-
tation der Wahrscheinlichkeiten, d.h. in der Realitét liegt einer der Zustinde ®; = a; ® ¢@; (mit der

‘Wahrscheinlichkeit ‘c j |2) vor, man weil} blof3 nicht welcher.

Man gelangt zu diesem Zustand Wg,, aber auch ohne Kollaps, wenn man einfach ein weiteres Mess-
instrument M> hinzunimmt, das als Teil der v. Neumannschen Kette mit dem Messinstrument wech-
selwirkt oder wie in Abschn. [5|beschrieben die Messung wiederholt

P(SMM>) _ chak 2P ® ‘PIEMZ)
k

Betrachtet man dann den Zustand des Teilsystems SM so erhilt man

2
oty (Pgp(smmy) ) = Z‘Ck‘ Poog) = Wsm
k

d.h. den Zustand nach dem Kollaps. Kann man auch in diesem Fall den Zustand Wgy, epistemisch
interpretieren?

Das zweite Messinstrument kann auf verschiedene Art “ins Spiel gebracht” werden, z.B. durch v.
Neumanns Kette zum Beobachter, Lawineneffekte mit Mehrfachmessungen oder die Wechselwirkung
mit der Umgebung. Entscheidend ist, das ein “Fuflabdruck” der Messung auerhalb von System und
primdren Messinstrument erhalten bleibt.

In der Dekohirenztheorie wird dies mittels der Umgebung ausgefiihrt. Ein Messinstrument ist ja i.A.
kein isoliertes System, sondern steht in Wechselwirkung mit seiner Umgebung. Daher ist es nahelie-
gend, es als offenes System zu behandeln und die Dekohirenz der Zeigerzustidnde zu betrachten, d.h.
Zustandsiibergénge, die durch die unkontrollierte Wechselwirkung mit der Umgebung zustande kom-
men (vgl. Schlosshauer, 2004). Bei der Konstruktion einer Messvorrichtung ist natiirlich darauf zu
achten, dass die Ablesung der Messwerte dadurch nicht gestort werden. Fiir den Messprozess macht
die Dekohérenztheorie folgende Annahmen:

1. Die Zeigerzustinde des Messinstruments konnen als rdumlich lokalisierte Wellenpakete eines
Teilchens beschrieben werden.

2. Die Wechselwirkung des Messinstruments mit der Umgebung folgt wie im vorigen Kapitel in
Abschnitt 4.5 besprochen einem Dekohirenzmechanismus, der aus beliebigen Zusténden eines
Teilchens Mischungen solcher rdumlich lokalisierter Wellenpakete produziert.

3. Bereits vorliegende Zeigerzustinde bleiben dabei unverdndert.

Die aufgefiihrten Bedingungen werden alle vom Wechselwirkungsschema einer wiederholbaren Mes-
sung erfiillt, wenn die Umgebung als ein Messinstrument modelliert wird, das die Zeigerobservable
des eigentlichen Messinstruments misst: Die Umgebung wird mit dem Hilbertraum .77, beschrieben,
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das zusammengesetzte System aus Messinstrument und Umgebung mit dem Hilbertraum 743, ® 77,
die Wechselwirkung durch Uyy € £ (5 ® 7). Die Wechselwirkung mit der Umgebung ldsst
Zeigerzustinde nach Annahme 3 invariant, es gilt fiir alle Zeigerzustinde ¢, € Z

Unu (Qr ® &) = @ ® &

wobei & € 7 paarweise orthogonale Zustinde der Umgebung darstellen. Mit dem Zustand @ €
@ 4 von System und Messinstrument (2.6) ergibt sich dann als Zustand des Gesamtsystems
H @ Iy @ Hy

PEMY) = 1) @ Uy (@ @ £9) =Y cx 04 @ Un (9 @ €0) = Y ek ® @ @ &
k k
Reduziert auf System und Messinstrument .77 ® %3, erhdlt man dann wieder die Mischung
2
Wsm = tr g (P[¢SMU]) - Z|Ck| Ployog,]
k

die am Ende des Messvorgangs nach dem Kollaps (2.8)) steht und als klassische Wahrscheinlich-
keitsverteilung auf dem Produktraum der Zeigerzustinde und der Eigenzustinde der Observablen A
interpretiert werden kann.

Wenn man die Umgebung als unkontrollierbar betrachtet, kann dieser Zustandsiibergang auch nicht
mehr riickgiingig gemacht werden und ist damit praktisch irreversibel.

Natiirlich bleibt zu zeigen, dass es auch konkrete Systeme gibt, die alle aufgestellten Forderungen
wenigstens ndherungsweise erfiillen. In den entsprechenden theoretischen Betrachtungen wird die
Umgebung meist als zusammengesetztes System einer groBen Anzahl (n — o) einfacher Quanten-
systeme (wie z. B. harmonische Oszillatoren) modelliert, das sich in einem Gleichgewichtszustand
befindet und mit dem betrachteten System wechselwirkt. Diese Wechselwirkung fiihrt dann zur Her-
ausbildung von Mischungen Gauf3scher Wellenpakete fiir den reduzierten Systemzustand (vgl. Qures-
hi [2012]]), die sich auf klassischen Teilchenbahnen bewegen. Fungiert das betrachtete System als
Messinstrument, so stellen die lokalisierten Wellenpakete die Zeigerzustinde dar.

Im Beispiel des Stern-Gerlach-Experiments wird dann unter dem Einfluss der Dekohirenz aus der
Superposition
P=c_ - +cipr @,
die Mischung
/ 2 2
W'=le-["Po g )+ le+] Po,0z,)

Das Kopenhagener Postulat, dass Messinstrumente im Endeffekt klassisch sein miissen, wird daher
im Prinzip durch die Dekohirenztheorie gestiitzt, wobei diese allerdings das Klassisch-Sein mittels
der Dekohirenz quantenmechanisch zu erkldren versucht, indem Superpositionen von Zeigerzustin-
den in klassische Wahrscheinlichkeitsverteilungen der Zeigerpositionen umgewandelt werden. Das
Kollapspostulat der Kopenhagener Interpretation ermoglicht dariiber hinaus irreversible Ubergiinge,
die “realen” Fakten entsprechen. Das Problem, dass jede quantenmechanische Beschreibung eines
geschlossenen Systems reversibel ist und alle Transformationen riickgéngig gemacht werden konnen,
versucht die Dekohidrenztheorie mit Hilfe der Unkontrollierbarkeit der makroskopischen Umgebung
zu losen.
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