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ABSTRACT. Bell’s theorem is reformulated and proved in the abstract mathematical terms
of automata theory, avoiding physical or ontological notions. It is stated that no pair of
sequential machines following a Bell test simulation protocol can reproduce in its output
data the statistical results of a quantum physical Bell test experiment if neither machine
depends on the other’s input.
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1. INTRODUCTION AND OVERVIEW

Bell’s theorem [Bell, 1964] is a crucial topic in the foundations of physics. Despite
its discovery about 60 years ago, many scientific papers continue to discuss its meaning
and implications (see Myrvold et al., 2024 and the references therein). Realizations of the
thought experiments on which the theorem is based are conducted every year with new
variations (e.g., Storz et al., 2023). The Nobel Prize in Physics was awarded in 2022 to
some designers of the first groundbreaking.

The fundamental idea of a Bell test experiment has a history: Einstein, Podolsky, and
Rosen (EPR 1935) developed a quantum physical thought experiment that theoretically
displays strange non-local correlations between the results of remote measurements on a
pair of particles, depending on the choice of the quantities to be measured. Schrödinger
[1935] coined the term entanglement (German “Verschränkung”) for this phenomenon.
The arrangement of this thought experiment was simplified by Bohm [1951, 1957] and
inspired Bell [1964] to a version supporting his theorem. Experimentalists such as Clauser,
Horne, Shimony, and Holt (CHSH 1969) transformed Bell’s thought experiment into real
ones using photon pairs, with the first sufficient realization by Aspect et al. [1982].

In a quantum physical Bell test experiment, the outcome statistics of the remote mea-
surements violate a probability theoretic inequality. From this fact is derived that “no
physical theory, which is realistic and also local in a specified sense, can agree with all
of the statistical implications of Quantum Mechanics” [Shimony, 2016]. However, the
meaning of this theorem and the assumptions of its proof are not easy to understand.

To provide a new perspective, we reformulate Bell’s theorem for automata theory in
abstract mathematical terms, avoiding physical or ontological notions. For this purpose,
the arrangement of an ideal Bell test experiment is represented by a pair of sequential
machines providing a straightforward mathematical model for automata with input and
output.1 Each machine receives a common random input (representing the particle) as
well as an input from an operator (representing the choice of the measured quantity), who
does not know the random input, and then produces an output (the measurement outcome)
controlled by a probabilistic or deterministic algorithm. The theorem states that no such

1The idea of using computer to explain the content of Bell’s theorem is not new (e.g., Gill, 2014) and inspired
this paper. However, we consider abstract automata to prove a theorem.
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pair can reproduce the statistical results of a quantum physical Bell test experiment in
its output data if neither machine depends on the other’s operator input. Therefore, any
computer simulation following this scheme requires information transmission between the
two parties to achieve the quantum physical result statistics.

After presenting a short sketch of the physical Bell test experiment, we describe its
simulation using sequential machines, prove the theorem and discuss a loophole and some
consequences of the theorem.

2. BELL TEST EXPERIMENT

For our purposes, a coarse sketch of an ideal2 Bell test experiment without any physical
details3 is sufficient.
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0 1
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λ
B

±1

FIGURE 2.1. Bell test experiment

A single run of the experiment starts by sending a pair of particles λ from a source, each
particle in another direction, to measurement devices A and B (Fig. 2.1). Each measure-
ment device can perform one of two different measurements. A switch with two positions
0, 1, symbolizes the selection by the experimenter (or an independent random generator) of
the measurement to be performed. Therefore, on each side, one of two possible quantities
A0, A1, respectively B0, B1, is measured. A display shows the measurement result, −1 or
+1 in any case.

This arrangement enables the measurement of one of the four possible pairs (A0,B0),
(A0,B1), (A1,B0), (A1,B1) in each run of the experiment, from which the corresponding
product A0B0, A0B1, A1B0, or A1B1 is computed, which also has the value −1 or 1. The
procedure is repeated with different random measurement selections. After several runs,
the mean values of the products A0B0, A0B1, A1B0, A1B1 are used to compute the expres-
sion

A0B0 +A0B1 +A1B0 −A1B1

which in the long run should approximate the theoretical given expectation value〈
ECHSH

〉
=
〈
A0B0 +A0B1 +A1B0 −A1B1

〉
=
〈
A0B0

〉
+
〈
A0B1

〉
+
〈
A1B0

〉
−
〈
A1B1

〉
.

2In real experiments, particle losses, detection errors, and many other factors must be taken into account,
opening several loopholes to question the experimental verification of Bell’s theorem. We will consider only the
ideal case and trust the experimentalists who claim that all physical loopholes are closed (cf. Hensen et al. [2015]).
The more metaphysical loophole, opened by superdeterminism with doubts about the free will of experimenters
and the independence of random generators, cannot be closed (cf. Hossenfelder and Palmer, 2020).

3A good introduction to the physical thought experiment and the theorem is given in Bell [1981].
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In probability theory, for any four random variables A0, A1, B0, B1, with the image
{−1,1} on a measure space (Ω,A ), the absolute value of this expectation value is bounded
according to the Bell-CHSH inequality [Clauser et al., 1969] by the value 2 (cf. App. B),
i.e., for any probability measure µ on (Ω,A )∣∣〈ECHSH

〉∣∣≤ 2.

However, quantum theory predicts values above 2 for the measurable quantities4 of
an ideal Bell test experiment, which is confirmed by the results of countless real Bell
test experiments since Aspect et al. [1982]. Therefore, the violation of the Bell-CHSH
inequality5 is an experimental fact of quantum physics.6

3. SIMULATION OF THE BELL TEST WITH SEQUENTIAL MACHINES

The theory of finite probabilistic sequential machines (FPSMs)7 is best suited to describe
a computer simulation of an ideal Bell test experiment. An FPSM receives an input symbol,
then changes possibly its internal state, and produces an output symbol controlled by a
probabilistic or deterministic algorithm. The sets of input symbols, output symbols, and
states are denoted by I,O,S.

To simulate the Bell experiment, the input and output of the FPSM can be defined
straightforward. The input is a triple i = (a,b,λ ), where a and b represent the experi-
menters’ choices, 0 or 1, and λ ∈ Λ some not further specified properties of the particle
pair8. The output is a pair o = (A,B), where A and B represent the possible measurement
results, −1 or 1, as shown in Figure 3.1.

M
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0 1

±1

±1

0 1

FIGURE 3.1. Simulation of the Bell test experiment using an FPSM

The algorithm of the machine is described through a probabilistic machine function,
which determines the probability p(o, t | i,s) ∈ [0,1] to obtain output o and state t after

4In quantum theory the four measurable quantities are called observables and are represented by self-adjoint
operators on a Hilbert space with the spectrum {−1,1}. The quantum theoretical expectation value of the corre-
sponding Bell-CHSH expression has as upper bound the Tsirelson bound 2

√
2 (Cirel’son, 1980).

5and several similar inequalities also called “Bell inequality”.
6Landau [1987] shows that observables with the spectrum {−1,1} violating the Bell-CHSH inquality are

ubiquitous in the set of observables of any quantum system. However, a compound system taken to a pair of
separated pieces is needed to perform the Bell test experiment.

7A brief introduction is provided in App. A.
8e.g. a secret pair of random numbers
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input i in state s for all i ∈ I,s ∈ S, with

∑
o∈O

∑
t∈S

p(o, t | i,s) = 1.

For a deterministic algorithm, all these probabilities have a value of 0 or 1 (c.f. App. A).
In Example 1, several probabilistic machine functions are listed.

Each simulation starts with an initial machine state, which is selected according to the
probability distribution

p0 : S → [0,1] with ∑
s∈S

p0(s) = 1

which may be deterministic as well.
Therefore, the full FPSM is defined formally by

M = (I,O,S, p0, p) = ({0,1}2 ×Λ ,{−1,1}2,S, p0, p).

3.1. Protocol for the Bell test simulation. The FPSM simulation has fewer constraints
than the original Bell test experiment: the output data may be totally random and not the
result of four different measurements. Therefore, we must use a slightly more general
notation. Furthermore, we must fix the simulation protocol to determine the statistics.

In each run of the simulation, the FPSM is prepared to an initial state s ∈ S accord-
ing to the probability distribution p0, using an independent random generator if p0 is not
deterministic.

Then, the input data is collected: An input symbol λ ∈ Λ , representing the parti-
cle data, is entered, randomly selected according to a probability distribution pΛ with
∑λ∈Λ pΛ (λ ) = 1 using an independent random generator. The input symbols a,b ∈ {0,1}
are entered by the operator (or some independent random generator) without knowledge of
(or dependence on) the input symbol λ or the initial state s.

After entering the input, the machine algorithm produces two output symbols A,B ∈
{−1,1}. The product of the output symbols A ·B ∈ {−1,1} is recorded together with the
corresponding pair of input symbols (a,b)

AB |a,b .
After a series of runs (or multiple series for the different combinations of the values of a,
b), the mean values of the recorded products for the different input symbols are computed

AB |0,0 , AB |0,1 , AB |1,0 , AB |1,1
with the value of the Bell-CHSH expression

ECHSH = AB |0,0 +AB |0,1 +AB |1,0 −AB |1,1 .
In the special case of a proper Bell test simulation, this value should approximate the
theoretical given expectation value of the Bell-CHSH expression〈

ECHSH
〉
=
〈
A0B0

〉
+
〈
A0B1

〉
+
〈
A1B0

〉
−
〈
A1B1

〉
in the long run. In general, the corresponding theoretical expression for the FPSM is a sum
of conditional output product expectation values

ẼCHSH =
〈
AB
〉
|0,0 +

〈
AB
〉
|0,1 +

〈
AB
〉
|1,0 −

〈
AB
〉
|1,1

which can be computed by〈
AB
〉
|a,b= ∑

A∈{−1,1}
∑

B∈{−1,1}
AB ·q(A,B|a,b)
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with the output probability function

q(A,B | a,b) = ∑
λ∈Λ

∑
s∈S

∑
t∈S

p(A,B, t | a,b,λ ,s)pΛ(λ )p0(s).

The value of ẼCHSH lies always in the closed interval [−4,4]. We say an FPSM fulfills the
Bell-CHSH inequality if ∣∣ẼCHSH

∣∣≤ 2,
otherwise, it violates the Bell-CHSH inequality.

Example 1. The following table gives the probabilistic machine functions and expectation
values of several simple FPSMs for the Bell test simulation. All these machine functions do
not depend on internal states or a λ -input, so we simply assume S = {sØ} with p0(sØ) = 1
and Λ = {λØ} with pΛ(λØ) = 1. Therefore, the probabilistic machine function is equal
to the output probability function q(A,B | a,b) = p(A,B,sØ | a,b,λØ,sØ). δx,y denotes the
Kronecker symbol with the values 1 if x = y and 0 otherwise. 9

q(A,B | a,b) = p(A,B,sØ | a,b,λØ,sØ)
〈
AB
〉
|0,0

〈
AB
〉
|0,1

〈
AB
〉
|1,0

〈
AB
〉
|1,1 ẼCHSH

M1
1
4 0 0 0 0 0

M2 δA,1δB,1 1 1 1 1 2

M3 δA,1δB,1−2ab 1 1 1 −1 4

M4
1
2 δA,1δB,1 +

1
2 δA,1δB,1−2ab 1 1 1 0 3

M5
2−

√
2

8 +
√

2
8 (2δA,B +2ab−4abδA,B)

√
2

2

√
2

2

√
2

2 −
√

2
2 2

√
2

M6
1
2 δa,b(δA,1δB,−1 +δA,−1δB,1)+

1
4 δa,1−b −1 0 0 −1 0

TABLE 1. Probabilistic machine functions and expectations of Example FPSMs

The output of FPSM M1 is evenly distributed and uncorrelated random, whereas M2 gives
the constant output (1,1). FPSM M3 changes the otherwise constant output B from 1 to
−1 in the case that a and b have the value 1. FPSM M4 is an evenly weighted statistical
mixture of M2 and M3. FPSM M5 is a simulation of an ideal quantum physical Bell test
experiment, with maximal violation of the Bell-CHSH inequality at the Tsirelson-bound.
FPSM M6 represents the EPR-Bohm experiment [Einstein et al., 1935, Bohm, 1951, Bohm
and Aharonov, 1957], where the random output is perfectly (anti-)correlated for equal input
values a = b, but perfectly uncorrelated otherwise.
The FPSMs M2 and M3 are deterministic because their probabilistic machine functions
have only the values 0 or 1. The value of ẼCHSH indicates that the FPSMs M1, M2, M6
fulfill the Bell-CHSH inequality, whereas M3, M4, M5 violate it.

3.2. Pairing sequential machines. FPSM M5 demonstrates that it is possible to simulate
an ideal Bell test experiment with an FPSM and obtain the same statistical results as those
obtained in a quantum physical experiment. However, to understand Bell’s theorem, the
simulation must be performed with a pair of two separated FPSMs, as sketched by the
circuit diagram in Fig. 3.2).

Both FPSMs10

Ma = ({0,1}2 ×Λ ,{−1,1},Sa, pa0 , pa),

9The free web app https://bell.qlwi.de can be used to perform Bell test simulations with these FPSMs on any
PC, tablet, or smartphone.

10We use the letters a,b in the upper position only as label not as exponent or summation index.

https://bell.qlwi.de
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FIGURE 3.2. Simulation of the Bell test experiment using two FPSMs

Mb = ({0,1}2 ×Λ ,{−1,1},Sb, pb0 , pb)

receive the same input11 but each one gives only a single output value A ∈ {−1,1}, respec-
tively B ∈ {−1,1}. The machine pair can be considered as one composite FPSM

Mab = ({0,1}2 ×Λ ,{−1,1}2,Sa×Sb, pa0 pb0 , papb)

which gives a pair of output values after each input. The probabilistic machine function
and the initial probability distribution are the product of the corresponding components,
reflecting the independence of the partial machines Ma and Mb.12 Therefore, not every
FPSM can be replaced by a composite pair.

Example 2. The FPSMs M1, M2, M3, M4 of Example 1 can be replaced by a compos-
ite pair. If we assume Sa = {sa0}, Sb = {sb0} and sab0 = (sa0 ,s

b
0 ) with pab0 (s0) = 1, then

M1 = ({0,1}2 ×{λ0},{−1,1}2,{s0}, p1,1) can be replaced by Mab
1 with the probabilistic

machine functions pa1 = 1
2 and pb1 = 1

2 because p1 = pa1 pb1 . Similarly, M2 can be replaced
by Mab

2 with pa2 = δA,1 and pb2 = δB,1, M3 by Mab
3 with pa3 = δA,1 and pb3 = δB,1−2ab, and

M4 by Mab
4 with pa4 = δA,1 and pb4 = 1

2 δB,1 +
1
2 δB,1−2ab .

3.3. Functional independence from remote inputs and the Bell-CHSH inequality. Now,
we consider the case in which the machine function pa of the composite FPSM Mab does
not depend on input b and the machine function pb does not depend on input a. In this
case, the vertical connections can be removed from the circuit diagram (dotted lines in Fig.
3.3).

11We assume only one λ -input for both machines and not a pair λa,λb as with the particles in the original
experiment. In the following proof, this assumption makes no difference.

12The machine functions represent fixed algorithms, which control each machine, separated and independent
from the other machine. However, the initial states of the machines can be prepared together, so we will allow
non-product initial probability distributions in the following.
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FIGURE 3.3. Simulation using two FPSMs without dependence on re-
mote inputs

The Bell test simulation follows the protocol described in Section 3.1. This allows
the joint initial state preparation of the composite machine pair according to an arbitrary
probability distribution pab0 . Therefore, we do not assume pab0 = pa0 pb0 for Mab.

Lemma 3. If pa depends not on selection input b and pb depends not on selection input
a, i.e.,

pa(A, ta | a,b,λ ,sa) = pa(A, ta | a,0,λ ,sa) = pa(A, ta | a,1,λ ,sa),
pb(B, tb | a,b,λ ,sb) = pb(B, tb | 0,b,λ ,sb) = pb(B, tb | 1,b,λ ,sb)

for all a,b ∈ {0,1}; λ ∈ Λ ;A,B ∈ {−1,1};sa, ta ∈ Sa;sb, tb ∈ Sb, then any composite
FPSM

Mab = ({0,1}2 ×Λ ,{−1,1}2,Sa×Sb, pab0 , papb)
fulfills the Bell-CHSH inequality ∣∣ẼCHSH

∣∣≤ 2
in the Bell test simulation.

Proof. The conditional output product expectations are〈
AB
〉
|a,b= ∑

λ∈Λ

∑
sa∈Sa

∑
sb∈Sb

pΛ(λ )pab0 (sa,sb)
〈
AB
〉

a,b,λ ,sa,sb

with〈
AB
〉

a,b,λ ,sa,sb = ∑
A∈{−1,1}

∑
B∈{−1,1}

∑
ta∈Sa

∑
tb∈Sb

AB · pa(A, ta | a,0,λ ,sa)pb(B, tb | 0,b,λ ,sb)

for all a,b ∈ {0,1}; λ ∈ Λ ,sa ∈ Sa,sb ∈ Sb. The latter can be interpreted as the output
product expectation value for a fixed input and initial state. Reordering gives

(3.1)
〈
AB
〉

a,b,λ ,sa,sb =
〈
A
〉

a,λ ,sa
〈
B
〉

b,λ ,sb

with 〈
A
〉

a,λ ,sa =

(
∑

A∈{−1,1}
∑

ta∈Sa
A · pa(A, ta | a,0,λ ,sa)

)
,

〈
B
〉

b,λ ,sb =

(
∑

B∈{−1,1}
∑

tb∈Sb
B · pb(B, tb | 0,b,λ ,sb)

)
.
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These expressions are the output expectation values of Ma and Mb with fixed a,λ ,sa,
respectively b,λ ,sb, and lie in the interval [−1,1]. So (according to App. B) the absolute
value of the expression

E
λ ,sa,sb =

(3.2)
〈
A
〉

0,λ ,sa
〈
B
〉

0,λ ,sb +
〈
A
〉

0,λ ,sa
〈
B
〉

1,λ ,sb +
〈
A
〉

1,λ ,sa
〈
B
〉

0,λ ,sb −
〈
A
〉

1,λ ,sa
〈
B
〉

1,λ ,sb

will be less or equal 2 for all λ ∈ Λ ,sa ∈ Sa,sb ∈ Sb. Hence,∣∣ẼCHSH
∣∣ =

∣∣〈AB
〉
|0,0 +

〈
AB
〉
|0,1 +

〈
AB
〉
|1,0 −

〈
AB
〉
|1,1
∣∣

=
∣∣∣∑
λ∈Λ

∑
sa∈Sa

∑
sb∈Sb

E
λ ,sa,sb pΛ (λ )pab0 (sa,sb)

∣∣∣
≤ ∑

λ∈Λ

∑
sa∈Sa

∑
sb∈Sb

∣∣∣Eλ ,sa,sb

∣∣∣ pΛ (λ )pab0 (sa,sb)

≤ ∑
λ∈Λ

∑
sa∈Sa

∑
sb∈Sb

2 pΛ (λ )pab0 (sa,sb) = 2.

□

Example 4. The machine functions of the composite FPSMs Mab
1 , Mab

2 in Example 2 are
independent from any inputs, so they fulfill the Bell-CHSH inequality.

3.4. Bell’s theorem. The validity of the Bell-CHSH inequality for any composite FPSM
Mab, defined as above, is a logical consequence of the functional independence of pa from
input b and pb from input a. Therefore, the violation of this inequality implies that there is
some functional dependence instead.

Theorem 5. For any composite FPSM Mab, defined as above, which violates the Bell-
CHSH inequality in the Bell test simulation, the probabilistic machine function pa depends
on the selection input b or the probabilistic machine function pb depends on the selection
input a.

In this case, the circuit diagram must contain at least one of the vertical connections repre-
sented by the dotted lines in Fig. 3.3.

Example 6. The composite FPSMs Mab
3 , Mab

4 in Example 2 violate the Bell-CHSH in-
equality. The machine function pb3 = δB,1−2ab depends on the input a as well as pb4 =
1
2 δB,1 +

1
2 δB,1−2ab.

3.5. Notes.
(1) A similar proof can be given for a slightly different Bell test simulation protocol,

where after the initial state preparation a sequence of input symbols generates a
sequence of output symbols. The machine state after step n is the initial state
for step n+ 1 with an initial state probability distribution pabn,...

13 analog to pab0 .
Because the proof of proposition 3 requires not a product distribution of the initial
states, it is valid for each step. In total, the output expectation for all sequences is
the mean value of the output expectations after each step.

(2) The proof is also valid for deterministic sequential machines (cf. App. A). In
this case a simplified proof is possible. Because there is no dependence on the
remote input, the output of each machine is implicitly defined by two real functions
A0(λ ,sa) = A(0,∗,λ ,sa), A1(λ ,sa) = A(1,∗,λ ,sa) and B0(λ ,sb) = B(∗,0,λ ,sb),

13This probability distribution depends on the complete history of inputs and the initial state.
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B1(λ ,sb) = B(∗,1,λ ,sb), so proposition 7 applies. This is also valid for infinite
deterministic machines, e.g., analog computer or neural networks over rational or
real numbers. Infinite probabilistic machines require additional measure theoretic
assumptions.

(3) It is important that the Bell test simulation follows the protocols described in Sec-
tion 3.1 or in Note 1, where the inputs a and b are freely chosen by the operators
or independent random generators and do not depend on λ or the initial machine
states. To shed some light on the superdeterminism loophole (cf. Hossenfelder and
Palmer, 2020) of Bell’s theorem, which doubts the free will of experimenters and
the independence of random generators, we can consider the case where the input
λ contains the recorded output A,B of an ideal Bell test experiment together with
the recorded choices a,b. The actual experimenters enter these recorded choices
from λ as their own input (violating the protocol). Very simple machine functions
pa, pb, which copy the recorded outputs A,B from λ , will exactly reproduce the
recordings from the ideal Bell test experiment and violate the Bell-CHSH inequal-
ity, without any functional dependence on the inputs a,b.
In a complete deterministic world, the recorded inputs a,b can be omitted from λ

if the superdeterministic fate determines the right input by the experimenters cor-
responding to the recorded values of A,B for each run of the simulation. However,
an observer not believing in such fate but knowing Bell’s theorem for sequential
machines can only conject a violation of the protocol or a hidden dependence of
the machine functions on the remote input.

4. CONCLUSION

Bell’s theorem for sequential machines sets limits to any computer simulation of quan-
tum physical experiments. It shows that some data transmission between the separated
parts is necessary to violate the Bell-CHSH inequality in the Bell test simulation and re-
produce the statistical results of an ideal quantum physical Bell test experiment.

This sheds some light on Bell’s original theorem if we add a suitable ontological hy-
pothesis, for example: For a realistic physical theory, every observation can be simulated
by sequential machines and observations on locally separated systems can be simulated by
separated machines. Consequently, in order to explain the results of the quantum physi-
cal Bell test experiments, information transmission between the separated machines must
be assumed. However, no such transmission was observed in any of these experiments.
Moreover, if there were hidden transmissions, they would have to be much faster than the
speed of light according to the experimental results of Gisin et al., 2008, which is beyond
any known physical mechanism. This is an obstacle for theories that attempt to explain
fundamental physics in terms of (non-quantum) cellular automata, essentially lattices of
sequential machines with input/output only between neighboring machines (see ’t Hooft,
2016).

Perhaps Bell’s theorem for sequential machines explains the famous statement that “no-
body understands quantum mechanics” [Feynman, 1965]. There are different ideas about
what understanding means. However, an important way to understand a process, especially
in science, is to follow it step by step in an algorithmic simulation, often only in the imag-
ination through a chain of thought. The theorem makes this impossible for the ideal Bell
test experiment if the separation of parts is observed.
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Finally, the theorem has value for automata theory itself. It sets some limits for net-
works of sequential machines that can be crossed by quantum devices, e.g., allowing cryp-
tographic protocols as described by Ekert [1991].
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APPENDIX A. SEQUENTIAL MACHINES14

A sequential machine (SM) is a simple model of a computing device. It accepts an input
and then produces an output, possibly changing its internal state. I, O, S denote the sets
of input symbols, output symbols (also called input and output alphabet) and states. An
SM is called finite if all sets I, O, S are finite. Finite SMs are well suited for the formal
description of control devices and many physical experiments.

A deterministic SM (DSM) is defined by a quintuple (I,O,S,s0, f ) where s0 ∈ S is the
initial state and the deterministic machine function

f : I ×S → O×S,(i,s) 7→ (o, t) = f (i,s)

determines the resulting output o and successor state t after the input i in state s.
For a probabilistic SM, the resulting output symbol o and state t are randomly chosen

after each input. A finite probabilistic SM (FPSM) is defined by a quintuple (I,O,S, p0, p)
with finite I, O, S, an initial state probability distribution function

p0 : S → [0,1]

which gives the probability of the initial state s, with

∑
s∈S

p0(s) = 1

and a probabilistic machine function

p : O×S× I ×S → [0,1],(o, t, i,s) 7→ p(o, t | i,s)

which gives the probability of obtaining output o and state t after input i in state s, with

∑
o∈O

∑
t∈S

p(o, t | i,s) = 1

for all i ∈ I,s ∈ S.
An FPSM (I,O,S, p0, p) is deterministic if the image of the functions p0 and p is {0,1}.

In this case, a corresponding DSM (I,O,S,s0, f ) can be defined with the initial state s0 ∈ S,
uniquely determined by p0(s0) = 1, and the (total) function f , which is uniquely defined
by the set of pairs ((i,s) 7→ (o, t)) with p(o, t | i,s) = 1. The original FPSM is completely
equivalent to this DSM in the sense that it gives the same output o and successor state t
for each input i ∈ I in state s ∈ S with probability 1 and different results with probability
0. Conversely, for any finite DSM (I,O,S,s0, f ), there is a completely equivalent deter-
ministic FPSM (I,O,S,δs0,s,δ f (i,s),(o,t)), where δx,y denotes the Kronecker symbol with the
values 1 if x = y and 0 otherwise.

Generally, two FPSMs Ma = (I,O,Sa, pa0 , pa), Mb = (I,O,Sb, pb0 , pb), with the same
input and output symbol sets, are considered equivalent if for each finite sequence of input
symbols, the probability of each sequence of output symbols with the same length is equal.
Salomaa [1969] proves that equivalence is determined by the set of input/output sequences
with the finite length l = |Sa|+

∣∣Sb∣∣−1.
Many other machine types can be described as FPSMs. Moore and Mealy machines are

FPSMs with special forms of the probabilistic machine function p (cf. Salomaa, 1969).
A “stateless” circuit can be described as an FPSM with one constant state, i.e., S = {sØ}.
Finite automata, without explicit output, can be represented by FPSMs with O = {0,1},

14This Section is based on Salomaa [1969]
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where output 1 indicates the acceptance of the input sequence. Any Turing machine that
terminates in fewer steps than a fixed finite limit (i.e., any computer that gives an output
after an input with a maximum delay), can be represented by an equivalent FPSM [Hennie,
1965]. Even a quantum computer with classical input and output I,O (and a finite set of
initial states and gates) can be described as an FPSM with a probabilistic machine func-
tion, whose probabilities are determined by the laws of quantum mechanics (similar to the
machine M5 in Example 1).

APPENDIX B. BELL-CHSH INEQUALITY

Proposition 7. Any four real numbers A0,A1,B0,B1 ∈ [−1,1] fulfill the inequality

(B.1)
∣∣A0B0 +A0B1 +A1B0 −A1B1

∣∣≤ 2.

Proof. The expression
A0B0 +A0B1 +A1B0 −A1B1

is linear in each of the four variables. Therefore, its maximum and minimum are located
on a corner of the hypercube [−1,1]4, where A0,A1,B0,B1 ∈ {−1,1}. In this case, for all
16 possible valuations, the following equations are valid

A0B0 +A0B1 +A1B0 −A1B1 = A0 (B0 +B1)+A1 (B0 −B1) =±2.

□

Proposition 8. Four random variables A0,A1,B0,B1 : Ω → [−1,1] on a measure space
(Ω,A ) fulfill for any probability measure µ on (Ω,A ) the Bell-CHSH inequality∣∣〈A0B0 +A0B1 +A1B0 −A1B1

〉∣∣≤ 2

where
〈 〉

indicates the expectation value with the measure µ .

Proof. Let for any ω ∈ Ω

E(ω) = A0(ω)B0(ω)+A0(ω)B1(ω)+A1(ω)B0(ω)−A1(ω)B1(ω).

Then, because of (B.1), |E(ω)| ≤ 2 for all ω ∈ Ω and∣∣〈E〉∣∣= ∣∣ˆ
Ω

E(ω)dµ
∣∣≤ ˆ

Ω

∣∣E(ω)
∣∣dµ ≤

ˆ

Ω

2dµ = 2.

□


