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Im Folgenden ist (H ,+,0, ·,C,〈 , 〉) ein komplexer, separabler Hilbertraum,
∥∥ϕ
∥∥ =

√
〈ϕ,ϕ〉 für

ϕ ∈H die vom Skalarprodukt induzierte Norm und ID eine Indexmenge, für die gilt: ist dimH
endlich, so ist ID = {1,2, ...,dimH }, andernfalls ist ID = N.

1 Symmetrische und Antisymmetrische Teilräume des Tensor-
produktes

Zur Physik: Wenn ein zusammengesetztes System aus n Teilchen besteht, die einzeln im Hilbertraum
H beschrieben werden, müsste das zusammengesetzte n-Teilchensystem durch das n-fache Tensor-
produkt

H ⊗n = H ⊗ ...⊗H (n−mal) (1)

beschrieben werden. Dies ist aber nicht der Fall, wenn die Teilchen nicht unterscheidbar sind: Zu-
stände des Gesamtsystems, die sich nur durch die Vertauschung von zweier Teilchen unterscheiden,
können physikalisch dann nicht unterschieden werden.

Bei der Vertauschung der Teilchen dürfen sich daher die Erwartungswerte aller Observablen nicht
ändern, d.h. der Zustandsvektor des Gesamtsystems darf sich höchstens um einen Phasenfaktor c∈ C
mit

∣∣c∣∣=1 ändern. Am Beispiel einer Wellenfunktion ψ ∈L 2(R3n) für ein n-Teilchensystem:

ϕ(r1, ...,r j, ...rk, ...,rn) = cϕ(r1, ...,rk, ...r j, ...,rn) (2)

Da eine erneute Vertauschung des gleichen Teilchenpaars wieder die Ausgangsituation ergibt, gilt für
diesen Phasenfaktor

c2 = 1 (3)

und damit c =±1. Die Erfahrung (bzw. das Spin-Statistik-Theorem der relativistischen Quantenfeld-
theorie) lehrt, dass je nach Teilchenart, Boson (ganzahliger Spin) oder Fermion (halbzahliger Spin),
die Wellenfunktion bei einer Vertauschung unverändert bleibt (c = 1) oder das Vorzeichen wechselt
(c =−1).

Zur Mathematik: Eine Funktion ϕ ∈L 2(R3)⊗n ist symmetrisch, wenn sie bei Vertauschung zweier
beliebiger Argumente gleich bleibt

ϕ(r1, ...,r j, ...rk, ...,rn) = ϕ(r1, ...,rk, ...r j, ...,rn) (4)

und antisymmetrisch, wenn sie das Vorzeichen wechselt

ϕ(r1, ...,r j, ...rk, ...,rn) =−ϕ(r1, ...,rk, ...r j, ...,rn) (5)

1



Zur Beschreibung eines n-Teilchensystems verwendet man daher statt des Hilbertraums L 2(R3)⊗n =
L 2(R3n) den abgeschlossenen Teilraum der symmetrischen Funktionen L 2

+(R3n) für Bosonen bzw.
den Teilraum antisymmetrischen Funktionen L 2

−(R3n) für Fermionen.

Da beliebige Linearkombinationen von (anti-)symmetrischen Funktionen wieder (anti-)symmetrisch
sind und der Grenzwert einer Folge von (anti-)symmetrischen Funktionen eine (anti-)symmetrische
Funktion ist, sind L 2

+(R3n) und L 2
−(R3n) abgeschlossene Teilräume von L 2(R3n).

Der Hilbertraum L 2(R3n) ist das n-fache Tensorprodukt H ⊗n =L (R3)⊗n des 1-Teilchen-Hilbertraums
H = L 2(R3). Ist {αk ∈H }k∈ID

eine Orthonormalbasis von H , so bilden alle n-fachen Tensorpro-
dukte αk1 ⊗ ...⊗αkn mit k1, ...,kn ∈ N eine Orthonormalbasis von H ⊗n = L (R3)⊗n. Diese Basis-
vektoren haben folgende Darstellung

αk1,...,kn(r1, ...rn) = αk1(r1) · ... ·αkn(rn) (6)

Zwar liegen diese Basisvektoren (bis auf wenige Ausnahmen) nicht in den Teilräumen L 2
+(R3n) und

L 2
−(R3n), dennoch muss es möglich sein, alle Vektoren dieser Teilräume als Linearkombinationen

dieser Basisvektoren darzustellen. Damit eine solche Linearkombination symmetrisch ist, müssen die
verwendeten Komponenten selbst in symmetrischer Form auftreten, d.h. zusammen mit αk1(r1) · ... ·
αkn(rn) muss auch jede Permutation αkP(1)

(r1) · ... ·αkP(n)
(rn) mit gleichem Gewicht in der Linearkom-

bination auftreten. Zu jedem Basisvektor αk1(r1) · ... ·αkn(rn) gibt es einen symmetrisierten Vektor

α
+
k1,...,kn

(r1, ...rn) = ∑
P∈Sn

αkP(1)
(r1) · ... ·αkP(n)

(rn) (7)

der in L 2
+(R3n) liegt. Die Menge dieser nicht normierten Vektoren spannt L 2

+(R3n) auf (aber nicht
alle sind verschieden!). Man kann allgemeiner im Hilbertraum H ⊗n die linearen Operatoren

S+ =
1
n! ∑

P∈Sn

P (8)

und
S− =

1
n! ∑

P∈Sn

(−1)g(P)P (9)

definieren, die beliebige Vektoren der Produktbasis und ihre Linearkombinationen (anti)symmetrisieren.
Dabei ist Sn die Menge der Permutationen von n Elementen und g(P) der Grad der Permutation P (0
für eine gerade, 1 für eine ungerade Anzahl von Transpositionen).

S+(αk1⊗ ...⊗αkn) =
1
n! ∑

P∈Sn

αP(k1)⊗ ...⊗αP(kn) (10)

S−(αk1⊗ ...⊗αkn) =
1
n! ∑

P∈Sn

(−1)g(P)
αP(k1)⊗ ...⊗αP(kn) (11)

Die Operatoren S+ und S− sind idempotent und selbstadjungiert und daher Projektionsoperatoren. Sie
projizieren auf den abgeschlossenen Teilraum der symmetrischen Vektoren

H ⊗n
+ = S+H ⊗n (12)

bzw. auf den abgeschlossenen Teilraum der antisymmetrischen Vektoren

H ⊗n
− = S−H ⊗n (13)

Für n > 2 bilden sie aber keine Zerlegung der Einheit, es gilt dann

S++S− 6= 1 (14)
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Will man die Basisvektoren explizit konstruieren, so ist es sinnvoll die Darstellung zu wechseln. Da je-
weils alle Permutationen auftauchen, ist nur relevant, wie oft jeder Einteilchenbasisvektor im Tensor-
produkt vorkommt. Dies führt zur Besetzungszahlendarstellung. Statt des Vektors ∑

P∈Sn

αP(k1)⊗ ...⊗

αP(kn) betrachtet man die Anzahlen n1,n2, ..., mit der jeder Vektor α1,α2, ... in αk1⊗ ...⊗αknauftaucht
(also physikalisch gesehen die Anzahlen der Teilchen in den Zuständen α1,α2, ...):∣∣n1,n2, ...

〉
(15)

mit n1, n2, ... ∈ N0 und ∑
k∈ID

nk = n und erhält damit eine eindeutige, orthogonale Darstellung der

Basisvektoren von H ⊗n
+ . Wir nehmen dabei an, dass die Vektoren in dieser Darstellung normiert

sind, dass also die Besetzungszahlenvektoren eine Orthonomalbasis darstellen:

〈
n1,n2, ...|m1,m2...

〉
= δn1,m1δn2,m2... (16)

Eine explizite Darstellung ergibt sich folgendermaßen: In der unendlichen Liste der Besetzungszahlen
sind höchstens n Stellen ungleich 0. Sind k1, ...,km diese Stellen (mit m≤ n), in denen die Besetzungs-
zahlen ungleich 0 sind, so ergibt sich ∣∣...,nk1, ...,nkm,0, ...

〉
=

√
n!

nk1!...nkm!
S+
(

α
⊗nk1
k1
⊗ ...⊗α

⊗nkm
km

)
= (17)

√
1

nk1!...nkm!
1
n! ∑

P∈Sn

(
α
⊗nkP(1)
kP(1)

⊗ ...⊗α
⊗nkP(m)

kP(m)

)
Analoges gilt für H ⊗n

− mit dem einzigen Unterschied, dass als Besetzungszahlen wegen der Anti-
symmetrie nur 0 und 1 auftreten: n1, n2, ... ∈ {0,1}. Daher gibt es genau n Stellen, in denen die
Besetzungszahlenliste mit 1 besetzt ist und es gilt∣∣...,1k1, ...,1kn, ...

〉
=

√
n!S− (αk1⊗ ...⊗αkn)√

1
n! ∑

P∈Sn

(−1)g(P)
(

αkP(1)
⊗ ...⊗αkP(n)

)
Der letzte Ausdruck erscheint manchmal in der Form der Slater-Determinante√

1
n!

∣∣∣∣∣∣
αk1(r1) ... αkn(r1)

... ... ...
αk1(rn) ... αkn(rn)

∣∣∣∣∣∣ (18)

Betrachtet man H ⊗n
+ ,H ⊗n

− als Hilberträume, so sind natürlich auch alle linearen Operatoren in die-
sen Räumen symmetrisch in dem Sinn, dass sie (anti)symmetrische Vektoren auf (anti)symmetrische
Vektoren abbilden. Operatoren aus H ⊗n haben i. A. nicht diese Eigenschaft.

Beispiel: Der Operator

X =
n

∑
k=1

Xk =
n

∑
k=1

1⊗ ...⊗Xk⊗ ...⊗1 (19)

ist symmetrisch, der Operator X2 = 1⊗X2⊗ ...⊗1 nicht.
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2 Direkte Summe von Hilberträumen

Sei I eine abzählbare Indexmenge und (Hk) mit k ∈ I eine Folge von Hilberträumen. Die direkte
Summe der Hilberträume H1,H2, ...

H = H1⊕H2⊕ ...= ⊕
k∈I

Hk (20)

ist die Menge aller Folgen (ϕk) mit ϕk ∈Hk für alle k ∈ I, für die gilt

∑
k∈I
‖ϕk‖2 = ∑

k∈I

〈
ϕk,ϕk

〉
< ∞ (21)

(Bei einer endlichen Indexmenge I ist diese Bedingung natürlich immer erfüllt). Definiert man eine
Addition auf H durch

(ϕk)+(χk) = (ϕk +χk) (22)

sowie eine Multiplikation mit Skalaren c ∈ K durch

c · (ϕk) = (c ·ϕk) (23)

für alle k ∈ I, so erhält man einen Vektorraum, der mittels des Skalarprodukts〈
(ϕk),(ϕk)

〉
= ∑

k∈I

〈
ϕk,χk

〉
(24)

zum Hilbertraum wird. (Die Vollständigkeit kann genauso bewiesen werden, wie beim Hilbertschen
Folgenraum l2.) Betrachtet man C als eindimensionalen Hilbertraum, so kann man den n-dimensionalen

Hilbertraum Cn als direkte Summe
n
⊕

k=1
C auffassen und den Hilbertschen Folgenraum l2 als ⊕

k∈N
C. Die

Menge der Folgen, bei denen an der Stelle k∈ I beliebige Elemente des Hilbertraums Hk stehen und
sonst alle Stellen mit den jeweiligen Nullvektoren besetzt sind, also Folgen der Form

(0, ...,0,ϕk,0, ...) (25)

bilden einen vollständigen Teilraum von H , der zu Hk isomorph ist und daher mit Hk identifiziert
wird. Man schreibt für einen Vektor der Form (0, ...,0,ϕk,0, ...) einfach ϕk und für ϕ = (ϕk) ∈H

ϕ = ∑
k∈I

ϕk (26)

Dabei ist
〈
ϕ j,ϕk

〉
= 0 für j 6= k und die Teilräume, die durch Hk und H j gegeben sind, sind für j 6= k

orthogonal
H j ⊥Hk (27)

Damit ergibt sich aber: Ist für alle k ∈ I {β j,k ∈Hk} j∈Ik eine Orthonormalbasis des Vektorraums Hk
mit abzählbarer Indexmenge Ik, so bildet die Vereinigungsmenge aller dieser Basisvektoren {β j,k ∈
Hk} j∈Ik,k∈I eine Basis von ⊕

k∈I
Hk:

ϕ = ∑
k∈I

ϕk = ∑
k∈I

∑
j∈Ik

〈
β j,k,ϕk

〉
β j,k = ∑

k∈I
∑
j∈Ik

〈
β j,k,ϕ

〉
β j,k (28)

Für endlichdimensionale Hilberträume gilt

dim ⊕
k∈I

Hk = ∑
k∈I

dimHk (29)

Ist H ein beliebiger Hilbertraum und T ⊆H ein Teilhilbertraum, so ist H = T ⊕T ⊥, wobei
T ⊥ = {ϕ ∈H | ∀χ ∈ T : 〈ϕ,χ〉= 0}. Ist für alle k ∈ I der Hilbertraum Hk separabel, so ist auch
die direkte Summe ⊕

k∈I
Hk separabel.
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3 Fockraum

Ist H ein separabler Hilbertraum (der ein einzelnes Teilchen beschreibt), so ist der Fockraum F+(H )
bzw. F−(H ) die abzählbar unendliche direkte Summe der symmetrischen bzw. antisymmetrischen
Tensorprodukte H ⊗n

+ bzw. H ⊗n
− für alle n ∈ N. Das 0-fache Tensorprodukt ist durch den eindi-

mensionalen Hilbertraum C= H ⊗0
+ = H ⊗0

− gegeben und das 1-fache Tensorprodukt durch H ⊗1
+ =

H ⊗1
− = H . Somit gilt

F+(H ) =
∞

⊕
n=0

H ⊗n
+ (30)

F−(H ) =
∞

⊕
n=0

H ⊗n
− (31)

Da für alle n∈N die (anti)symmetrischen Tensorprodukte abgeschlossene Teilräume des entsprechen-
den Fockraumes sind, eignet sich dieser zur Beschreibung von Systemen mit beliebiger Anzahl glei-
cher Teilchen. Zwingend notwendig wird die Verwendung des Fockraums in der Quantenfeldtheorie
bei Systemen mit variabler Teilchenanzahl: Ein Zustandsvektor ψ aus F+(H ) bzw. F−(H ) hat die
Form

ψ = c0ψ0 + c1ψ1 + c2ψ2 + ... (32)

wobei ψ0,ψ1,ψ2, ... jeweils Einheitsvektoren der Räume H ⊗0
+ ,H ⊗1

+ ,H ⊗2
+ , ... bzw. H ⊗0

− ,H
⊗1
− ,H ⊗2

− , ...

darstellen und
∞

∑
n=0
|cn|2 = 1 ist. Ein solcher Zustand entspricht i. A. nicht einer definierten Teilchen-

zahl: die Wahrscheinlichkeit, bei einer Messung genau 2 Teilchen zu finden, beträgt beispielsweise
|c2|2, der Erwartungswert der Teilchenzahl ist

〈N〉=
∞

∑
k=0
|ck|2 k (33)

3.1 Besetzungszahlendarstellung

Ist {αk ∈H }k∈ID
eine Orthonormalbasis von H , so bilden die Vektoren der oben eingeführten Be-

setzungszahlendarstellung eine Orthonormalbasis des Fockraumes

|n1,n2, ...〉 (34)

für alle n ∈N0 mit n = ∑nk
k∈ID

< ∞ und n1,n2, ... ∈N0 für F+(H ) bzw. n1,n2, ... ∈ {0,1} für F−(H ).

Für jeden Basisvektor legt die Summe der Anzahlen ∑nk
k∈ID

= n fest, zu welchem n-Teilchen-Teilraum

der Basisvektor gehört, in jedem n-Teilchen-Teilraum werden die gleichen Basisvektoren verwendet,
wie beim n-fachen (anti)symmetrischen Tensorprodukt. Der 0-Teilchen-Teilraum ist eindimensional,
es gibt nur den einen Zustandsvektor

|0,0, ...〉 (35)

den man als Vakuumzustand bezeichnet und abkürzend mit |0〉 kennzeichnet. Der Vakuumzustand
darf nicht mit dem Nullvektor des Hilbertraums verwechselt werden, für den man einfach 0 schreibt

|0〉 6= 0 (36)

Die Besetzungszahlen werden natürlich immer bzgl. einer bestimmten Orthonormalbasis des zu-
grundeliegenden Hilbertraum H angegeben (Basistransformationen werden wir noch behandeln).
Im Allgemeinen handelt es sich dabei um Eigenvektoren eines vollständigen Satzes kommutierender
selbstadjungierter Operatoren in H . Lediglich der Vakuumzustand gehört als Basisvektor zu jeder
Orthonormalbasis des Fockraums.
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3.2 Erzeugungs- und Vernichtungsoperatoren

Ist H ein separabler Hilbertraum, F+(H ) der zugehörige symmetrische Fockraum und {αk ∈
H }k∈ID

eine Orthonormalbasis von H , so kann man in der Besetzungszahlendarstellung bzgl. dieser
Basis folgende lineare Operatoren einführen, indem man für alle k ∈ ID und nk > 0 definiert

Ak
∣∣...,nk, ...

〉
=
√

nk
∣∣...,nk−1, ...

〉
(37)

Für nk = 0 ist
Ak
∣∣...,0k, ...

〉
= 0 (38)

der Nullvektor im Vektorraum. Es folgt für den adjungierten Operator A†
k

A†
k

∣∣...,nk, ...
〉
=
√

nk +1
∣∣...,nk +1, ...

〉
(39)

denn es gilt 〈
...,nk +1, ...|A†

k(...,nk, ...)
〉
=
〈
Ak(...,nk +1, ...)|...,nk, ...

〉
=
√

nk +1 (40)

Da in der Besetzungszahldarstellung durch die Operatoren A†
k und Ak jeweils die Besetzungszahl

an der Stelle k (und damit die Teilchenzahl) um 1 erhöht bzw. erniedrigt wird, spricht man von
Erzeugungs- und Vernichtungsoperatoren. Der Operator Nk = A†

kAk ist selbstadjungiert, und, wie man
leicht sieht, gilt für alle k ∈ ID und alle nk ∈ N0

A†
kAk
∣∣...,nk, ...

〉
= nk

∣∣...,nk, ...
〉

(41)

Er gibt die Anzahl der Teilchen im Zustand αk. Die gesamte Teilchenanzahl ergibt sich dann durch
den Operator

N = ∑
k∈ID

A†
kAk (42)

Für alle j,k ∈ N gelten die Vertauschungsrelationen

A jAk−A jAk = 0 (43)

A†
jA

†
k−A†

kA†
j = 0 (44)

A jA
†
k−A†

jAk = δ j,k (45)

Es ist offensichtlich, dass man ausgehend vom Vakuumzustand |0〉 mit Hilfe von Produkten von
Erzeugungsoperatoren jeden beliebigen Basiszustand des Fockraums erzeugen kann:

∣∣n1,n2, ...
〉
=

√
1

n1!n2!...
(A†

k)
n1(A†

k)
n2... |0〉 (46)

und damit jeden Vektor ψ ∈F+(H )

ψ = ∑
n1,n2,...∈N

cn1,n2....

√
1

n1!n2!...
(A†

k)
n1(A†

k)
n2... |0〉 (47)

Im Grund handelt es sich dabei um eine Darstellung des Hilbertraums im Rahmen der Algebra der
Erzeugungs- und Vernichtungsoperatoren.

Für den antisymmetrischen Fockraum F−(H ) gilt analog (für alle k ∈ N)

Ak
∣∣...,1k, ...

〉
= (−1)

∑
k∈N

nk∣∣...,0k, ...
〉

(48)
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Ak
∣∣...,0k, ...

〉
= 0 (49)

sowie
A†

k

∣∣...,1k, ...
〉
= (−1)

∑
k∈N

nk∣∣...,0k, ...
〉

(50)

Ak
∣∣...,1k, ...

〉
= 0 (51)

und
A†

kAk
∣∣...,nk, ...

〉
= nk

∣∣...,nk, ...
〉

(52)

und die Antikommutatorrelationen

A jAk +A jAk = 0 (53)

A†
jA

†
k +A†

kA†
j = 0 (54)

A jA
†
k +A†

jAk = δ j,k (55)

Die Erzeugungs- und Vernichtungsoperatoren hängen von der Orthonormalbasis {α ∈H }k∈ID ab.
Wenn man eine andere Orthonormalbasis {β ∈H } j∈ID

verwendet mit∣∣βk
〉
= ∑

j∈ID

c j,k
∣∣α j
〉

(56)

und für alle j,k ∈ ID
c j,k =

〈
α j,βk

〉
(57)

so gilt für die zugehörigen Erzeugungs- und Vernichtungsoperatoren

B†
k = ∑

j∈ID

c j,kA†
j (58)

Bk = ∑
j∈ID

ck, jA j (59)

Man kann leicht überprüfen, dass die obigen Relationen alle erfüllt sind. Weiterhin gilt

N = ∑
j∈ID

A†
jA j = ∑

k∈ID

B†
kBk (60)

d.h. wie zu erwarten ist, hängt die Gesamtanzahl der Teilchen nicht von der Basis ab.
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