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Im Folgenden ist (J#,+,0,-,C,(,)) ein komplexer, separabler Hilbertraum, qu = /() fir

¢ € J die vom Skalarprodukt induzierte Norm und Ip eine Indexmenge, fiir die gilt: ist dim.#
endlich, so ist Ip = {1,2,...,dim .7}, andernfalls ist Ip = N.

1 Symmetrische und Antisymmetrische Teilriume des Tensor-
produktes

Zur Physik: Wenn ein zusammengesetztes System aus n Teilchen besteht, die einzeln im Hilbertraum
¢ beschrieben werden, miisste das zusammengesetzte n-Teilchensystem durch das n-fache Tensor-
produkt

H =A@ ...0 A (n—mal) (1)

beschrieben werden. Dies ist aber nicht der Fall, wenn die Teilchen nicht unterscheidbar sind: Zu-
stande des Gesamtsystems, die sich nur durch die Vertauschung von zweier Teilchen unterscheiden,
konnen physikalisch dann nicht unterschieden werden.

Bei der Vertauschung der Teilchen diirfen sich daher die Erwartungswerte aller Observablen nicht
dndern, d.h. der Zustandsvektor des Gesamtsystems darf sich hochstens um einen Phasenfaktor ce C
mit |c‘:1 indern. Am Beispiel einer Wellenfunktion y € .#%(R3") fiir ein n-Teilchensystem:

Oy Tjy T hy ey Tn) = CO(F1, e Thy Ty ooy Ty) 2)

Da eine erneute Vertauschung des gleichen Teilchenpaars wieder die Ausgangsituation ergibt, gilt fiir

diesen Phasenfaktor
=1 (3)

und damit ¢ = +£1. Die Erfahrung (bzw. das Spin-Statistik-Theorem der relativistischen Quantenfeld-
theorie) lehrt, dass je nach Teilchenart, Boson (ganzahliger Spin) oder Fermion (halbzahliger Spin),
die Wellenfunktion bei einer Vertauschung unveréndert bleibt (¢ = 1) oder das Vorzeichen wechselt
(c=-1).

Zur Mathematik: Eine Funktion ¢ € 2% (R3)®" ist symmetrisch, wenn sie bei Vertauschung zweier
beliebiger Argumente gleich bleibt

O(T1y ey FjlhyeeesTn) = Q(F1y ey Thy ool jy ey ) 4)
und antisymmetrisch, wenn sie das Vorzeichen wechselt

Q(r1y ey Fjylhs oo Tn) = —Q(F1, ooy Ty o Fjy ooy Ty) (5)



Zur Beschreibung eines n-Teilchensystems verwendet man daher statt des Hilbertraums .2 (R3)®" =
£?(R3") den abgeschlossenen Teilraum der symmetrischen Funktionen .#(R3") fiir Bosonen bzw.
den Teilraum antisymmetrischen Funktionen .#? (R*") fiir Fermionen.

Da beliebige Linearkombinationen von (anti-)symmetrischen Funktionen wieder (anti-)symmetrisch
sind und der Grenzwert einer Folge von (anti-)symmetrischen Funktionen eine (anti-)symmetrische
Funktion ist, sind .#Z(R3") und .#2(R¥") abgeschlossene Teilrdume von £ (R3").

Der Hilbertraum %% (R*") ist das n-fache Tensorprodukt ./#®" = 2 (R3)®" des 1-Teilchen-Hilbertraums
H = LR Ist{og € #},c 1, €ine Orthonormalbasis von 7, so bilden alle n-fachen Tensorpro-

dukte o, ® ... ® o, mit ky,...,k, € N eine Orthonormalbasis von J#*" = £ (R3)®". Diese Basis-
vektoren haben folgende Darstellung

akl7“'>kl‘l (r17 "'rn) = akl (rl) Teeet akn (rn) (6)

Zwar liegen diese Basisvektoren (bis auf wenige Ausnahmen) nicht in den Teilrdumen Zf(ﬂ@") und
£?(R3"), dennoch muss es moglich sein, alle Vektoren dieser Teilriume als Linearkombinationen
dieser Basisvektoren darzustellen. Damit eine solche Linearkombination symmetrisch ist, miissen die
verwendeten Komponenten selbst in symmetrischer Form auftreten, d.h. zusammen mit o, (1) - ... -
O, (n) muss auch jede Permutation oy, (r1)-...- O, () mit gleichem Gewicht in der Linearkom-
bination auftreten. Zu jedem Basisvektor oy, (r1) - ... 0, (r,) gibt es einen symmetrisierten Vektor

ag,...,kn("lv""n) = Z Oy (11) oo Oy, (7n) (7
pPes,

der in #Z(IR3") liegt. Die Menge dieser nicht normierten Vektoren spannt .#7(R3") auf (aber nicht
alle sind verschieden!). Man kann allgemeiner im Hilbertraum " die linearen Operatoren

1

Si=— Z P )
Pes,
und {
S = - Z (—1)P)p )
Pes,

definieren, die beliebige Vektoren der Produktbasis und ihre Linearkombinationen (anti)symmetrisieren.
Dabei ist ., die Menge der Permutationen von n Elementen und g(P) der Grad der Permutation P (0
fiir eine gerade, 1 fiir eine ungerade Anzahl von Transpositionen).

1
(0 @ @) == ¥ Opiry) @ @ p,) (10)
TPeS,
1
S_(og, ®...Q004,) = p} Z (—l)g(P)OCP(k]) @ ... Q Op(k,) (11)
‘PeSy

Die Operatoren S und S_ sind idempotent und selbstadjungiert und daher Projektionsoperatoren. Sie
projizieren auf den abgeschlossenen Teilraum der symmetrischen Vektoren

HE" =S A" (12)
bzw. auf den abgeschlossenen Teilraum der antisymmetrischen Vektoren

A =S A" (13)
Fiir n > 2 bilden sie aber keine Zerlegung der Einheit, es gilt dann
Si+S_#1 (14)
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Will man die Basisvektoren explizit konstruieren, so ist es sinnvoll die Darstellung zu wechseln. Da je-
weils alle Permutationen auftauchen, ist nur relevant, wie oft jeder Einteilchenbasisvektor im Tensor-

produkt vorkommt. Dies fiihrt zur Besetzungszahlendarstellung. Statt des Vektors ) otp;,) ® ... ®
pPe.s,
Op (k) betrachtet man die Anzahlen n,n, ..., mit der jeder Vektor o, 02, ... in 04, @ ... ® 0y, auftaucht

(also physikalisch gesehen die Anzahlen der Teilchen in den Zustéinden o, 0, ...):

|I’l1,l’l2,...> (15)

mit ny, ny, ... € No und ) n; = n und erhilt damit eine eindeutige, orthogonale Darstellung der
kelp

Basisvektoren von jﬁ?”. Wir nehmen dabei an, dass die Vektoren in dieser Darstellung normiert
sind, dass also die Besetzungszahlenvektoren eine Orthonomalbasis darstellen:

<n1,n2,...]m1,m2...> :6n1,m16n2,m2~-- (16)

Eine explizite Darstellung ergibt sich folgendermafen: In der unendlichen Liste der Besetzungszahlen
sind hochstens 7 Stellen ungleich 0. Sind &, ..., k,,, diese Stellen (mit m < n), in denen die Besetzungs-
zahlen ungleich 0 sind, so ergibt sich

‘...7nk1,...,nkm,0,-..> =

n! g, @,
— s (a,q ®.. @0 ) - (17)
Ny - N, -
Z ®nkP ® a®nkP(m)
g Lo, nlp T k()
=

Analoges gilt fiir 7#®" mit dem einzigen Unterschied, dass als Besetzungszahlen wegen der Anti-
symmetrie nur 0 und 1 auftreten: nj, ny, ... € {0,1}. Daher gibt es genau n Stellen, in denen die
Besetzungszahlenliste mit 1 besetzt ist und es gilt

ooy Ly ey Ly o) =

\/IES_ ((Xkl RX... OCkn)

Z (akP © ... & Ok, )

Pe/
Der letzte Ausdruck erscheint manchmal in der Form der Slater-Determinante

1 (Xkl(rl) (an(rl)
— .. (18)

|
oy, (ra) o o, (1)

Betrachtet man e%ﬂ@",jﬁ ®n als Hilbertrdume, so sind natiirlich auch alle linearen Operatoren in die-
sen Raumen symmetrisch in dem Sinn, dass sie (anti)symmetrische Vektoren auf (anti)symmetrische
Vektoren abbilden. Operatoren aus .#"“" haben i. A. nicht diese Eigenschaft.

Beispiel: Der Operator

n n
X:ZXk:kleéa...@Xk@...@l (19)

ist symmetrisch, der Operator X, = 1 ® X» ® ... ® 1 nicht.
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2 Direkte Summe von Hilbertraumen

Sei I eine abzéhlbare Indexmenge und (.77;) mit k € I eine Folge von Hilbertrdumen. Die direkte
Summe der Hilbertrdume 771, .763, ...

%z%@%@...:k@lﬁi (20)
€

ist die Menge aller Folgen (@) mit ¢ € 7 fiir alle k € I, fiir die gilt
Y lloel® =Y (o o) <o 21)

kel kel

(Bei einer endlichen Indexmenge I ist diese Bedingung natiirlich immer erfiillt). Definiert man eine
Addition auf ¢ durch

(@) + (X)) = (@ + %) (22)
sowie eine Multiplikation mit Skalaren ¢ € K durch
¢ (o) = (c- o) (23)
fiir alle k € I, so erhilt man einen Vektorraum, der mittels des Skalarprodukts
«%Mwﬁzéwm@ (24)

zum Hilbertraum wird. (Die Vollstindigkeit kann genauso bewiesen werden, wie beim Hilbertschen
Folgenraum /,.) Betrachtet man C als eindimensionalen Hilbertraum, so kann man den n-dimensionalen

Hilbertraum C" als direkte Summe é C auffassen und den Hilbertschen Folgenraum /; als & C. Die
keN

k=1
Menge der Folgen, bei denen an der Stelle k€ I beliebige Elemente des Hilbertraums .7; stehen und
sonst alle Stellen mit den jeweiligen Nullvektoren besetzt sind, also Folgen der Form

0, ...,0,9,0,...) (25)

bilden einen vollstindigen Teilraum von 77, der zu .77, isomorph ist und daher mit .77}, identifiziert
wird. Man schreibt fiir einen Vektor der Form (0, ...,0, ¢,0, ...) einfach ¢ und fiir ¢ = (@) € H#

¢=) o (26)
kel
Dabei ist {@;, ) = O fiir j # k und die Teilrdume, die durch .7 und .7; gegeben sind, sind fiir j # k
orthogonal
G L (27)

Damit ergibt sich aber: Ist fiir alle k € I {B; x € 7} jc;, eine Orthonormalbasis des Vektorraums .7
mit abzihlbarer Indexmenge I, so bildet die Vereinigungsmenge aller dieser Basisvektoren {f;; €
i} jer, ker €ine Basis von @ J4;:

kel
0=Yo=Y.) Biw0)Bix=Y.) (Bix:®)Bjx (28)
kel keljel, keljel;

Fiir endlichdimensionale Hilbertriume gilt

dim & % = ) dim;, (29)

Ist 2 ein beliebiger Hilbertraum und .7 C ¢ ein Teilhilbertraum, so ist 7 = .7 @& .7, wobei

T+ ={eec#|VyeT:{p,x) =0} Istfiir alle k € I der Hilbertraum .7# separabel, so ist auch

die direkte Summe @ .7 separabel.
kel



3 Fockraum

Ist 77 ein separabler Hilbertraum (der ein einzelnes Teilchen beschreibt), so ist der Fockraum .7 ()
bzw. .7_ () die abzéhlbar unendliche direkte Summe der symmetrischen bzw. antisymmetrischen
Tensorprodukte %”Jr@” bzw. %" fiir alle n € N. Das 0-fache Tensorprodukt ist durch den eindi-
mensionalen Hilbertraum C = %@r@o = 0 gegeben und das 1-fache Tensorprodukt durch %ﬂ_@’] =
AN = 7. Somit gilt

F(H) = éojf@" (30)
F_(H) = moﬁﬂ_@" 31)

Da fiir alle ne N die (anti)symmetrischen Tensorprodukte abgeschlossene Teilrdume des entsprechen-
den Fockraumes sind, eignet sich dieser zur Beschreibung von Systemen mit beliebiger Anzahl glei-
cher Teilchen. Zwingend notwendig wird die Verwendung des Fockraums in der Quantenfeldtheorie
bei Systemen mit variabler Teilchenanzahl: Ein Zustandsvektor y aus % () bzw. .Z_(.¢) hat die
Form

V=coYo+c1yi+c2yr+... (32)
wobei Wy, Wy, Y2, ... jeweils Einheitsvektoren der Raume 5220, 21, 22, .. baw. 50, A S
darstellen und ), |c,,]2 = 1 ist. Ein solcher Zustand entspricht 1. A. nicht einer definierten Teilchen-

n=0
zahl: die Wahrscheinlichkeit, bei einer Messung genau 2 Teilchen zu finden, betridgt beispielsweise
) 2, der Erwartungswert der Teilchenzahl ist

(N)=Y |k (33)
k=0

3.1 Besetzungszahlendarstellung

Ist {oy € 7}, 1, €ine Orthonormalbasis von ., so bilden die Vektoren der oben eingefiihrten Be-
setzungszahlendarstellung eine Orthonormalbasis des Fockraumes

|n1,n2,...> (34)
fiir alle n € Ng mit n =Y ng < cound ny,ny,... € Ny fiir 7, () bzw. ny,ny, ... € {0,1} fir F_ ().
kelp
Fiir jeden Basisvektor legt die Summe der Anzahlen ) n; = n fest, zu welchem n-Teilchen-Teilraum
kelp

der Basisvektor gehort, in jedem n-Teilchen-Teilraum werden die gleichen Basisvektoren verwendet,
wie beim n-fachen (anti)symmetrischen Tensorprodukt. Der O-Teilchen-Teilraum ist eindimensional,
es gibt nur den einen Zustandsvektor

0,0,...) (35)

den man als Vakuumzustand bezeichnet und abkiirzend mit |0) kennzeichnet. Der Vakuumzustand
darf nicht mit dem Nullvektor des Hilbertraums verwechselt werden, fiir den man einfach O schreibt

0) #0 (36)

Die Besetzungszahlen werden natiirlich immer bzgl. einer bestimmten Orthonormalbasis des zu-
grundeliegenden Hilbertraum 57 angegeben (Basistransformationen werden wir noch behandeln).
Im Allgemeinen handelt es sich dabei um Eigenvektoren eines vollstdndigen Satzes kommutierender
selbstadjungierter Operatoren in 7. Lediglich der Vakuumzustand gehort als Basisvektor zu jeder
Orthonormalbasis des Fockraums.



3.2 Erzeugungs- und Vernichtungsoperatoren

Ist 7 ein separabler Hilbertraum, %, () der zugehorige symmetrische Fockraum und {og €
I} e 1, eine Orthonormalbasis von .77, so kann man in der Besetzungszahlendarstellung bzgl. dieser
Basis folgende lineare Operatoren einfiihren, indem man fiir alle £ € Ip und n; > 0 definiert

Akt ) = /gl me— 1,00 (37)

Fiir n, = 0 ist
Ak, 0k, ...) =0 (38)

der Nullvektor im Vektorraum. Es folgt fiir den adjungierten Operator A,t

Allccymiy ) = Ve eme+ 1,0 (39)

denn es gilt

Comet LA Cmg o)) = (Ar oy 1, ) ey ) = /g 1 (40)

Da in der Besetzungszahldarstellung durch die Operatoren A;E und A; jeweils die Besetzungszahl
an der Stelle k (und damit die Teilchenzahl) um 1 erhoht bzw. erniedrigt wird, spricht man von
Erzeugungs- und Vernichtungsoperatoren. Der Operator N = A,tAk ist selbstadjungiert, und, wie man
leicht sieht, gilt fiir alle k € Ip und alle n; € Ny

ATA ooy o) = |y gy ) 1)

Er gibt die Anzahl der Teilchen im Zustand ¢. Die gesamte Teilchenanzahl ergibt sich dann durch
den Operator

N=Y AlA (42)

kelp

Fiir alle j,k € N gelten die Vertauschungsrelationen

AjAr—AjAL =0 (43)
taT _afal =

AJAL —AA =0 (44)

AJAL—ATAL =8, (45)

Es ist offensichtlich, dass man ausgehend vom Vakuumzustand |0) mit Hilfe von Produkten von
Erzeugungsoperatoren jeden beliebigen Basiszustand des Fockraums erzeugen kann:

1

_ T\n1 AT\
n1,na,..) = n1!n2!...(Ak) H(A))™...|0) (46)
und damit jeden Vektor y € .Z ()
= )Y c L]y a))y=...|o) (47)
V= B VPR T T koo

ni,ny,...€N

Im Grund handelt es sich dabei um eine Darstellung des Hilbertraums im Rahmen der Algebra der
Erzeugungs- und Vernichtungsoperatoren.

Fiir den antisymmetrischen Fockraum .%_ (J¢) gilt analog (fiir alle k € N)

Ak\...,lk,...>:(—1)k€ZNnk]...,0k,...> (48)
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Ag|..,0k,..) =0

sowie
Al 1py.) = (—1)keZN""\...,ok, )

Ag|o i) =0

und
A,LAk‘...,nk, > = nk|...,nk, >

und die Antikommutatorrelationen

AjAr+AjAL=0

AfAl+alAT =0

A_,'A;E —I—A;Ak = 5j,k

(49)

(50)
(1)

(52)

(53)

(54)
(55)

Die Erzeugungs- und Vernichtungsoperatoren hingen von der Orthonormalbasis {& € 7}y, ab.

Wenn man eine andere Orthonormalbasis {f € ¢} jer, verwendet mit
By = X cixla)
JEID
und fiir alle j,k € Ip
cju = (@ Br)
so gilt fiir die zugehorigen Erzeugungs- und Vernichtungsoperatoren

T_ T
Bk = Z Cj,kAj
JEIp

Bk = Z Ck.,jAj
JEIp

Man kann leicht tiberpriifen, dass die obigen Relationen alle erfiillt sind. Weiterhin gilt

N=Y ala;=Y BB

J€Ip kelp

d.h. wie zu erwarten ist, hiangt die Gesamtanzahl der Teilchen nicht von der Basis ab.
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