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Die beriihmte Arbeit von Einstein, Podolsky und Rosen (EPR [1935) endet mit der Feststellung: “Wih-
rend wir somit gezeigt haben, dass die Wellenfunktion keine vollstindige Beschreibung der physika-
lischen Realitit liefert, lassen wir die Frage offen, ob eine solche Beschreibung existiert oder nicht.
Wir glauben jedoch, dass eine solche Theorie moglich ist.”

Dies wirft die Frage auf, ob die Quantenmechanik eine unvollstindige Theorie ist, die durch die
Einfiihrung weiterer Groflen so vervollstindigt werden kann, dass eine realistische Theorie entsteht,
in der alle GroB3en unabhédngig von Beobachtungen eindeutig definierte Werte haben.

Nun stellt eine Reihe von Theoremen (Kochen-Specker, v. Neumann/Gleason) klar, dass eine solche
realistische Theorie nicht allen quantenmechanischen Observablen zu jedem Zeitpunkt bestimmte
Werte zuordnen kann. Dies macht aber eine realistische Theorie nicht unmoglich: In der Bohmschen
Mechanik haben beispielsweise nur die Teilchenorte immer bestimmte Werte, andere (mit dem Ort
nicht kommutierende) quantenmechanischen Observablen sind dagegen auferhalb ihrer Messungen
undefiniert und lediglich als Produkte der entsprechenden Messvorrichtungen (und der Wellenfunkti-
on) anzusehen.

In der Auseinandersetzung mit diesem Thema [Bell (1964, |1966) stellte J. S. Bell die nach ihm be-
nannte Ungleichung auf, die in allen realistischen Theorien gilt, aber in der Quantenmechanik - unter
gewissen Bedingungen - verletzt wird. Die Folgerung, die auch als Bells Theorem bezeichnet wird,
lautet nach Shimony| (2016)):

Keine physikalische Theorie, die realistisch und lokal ist, kann in allen statistischen Aussagen mit der
Quantenmechanik iibereinstimmen.

Unter Lokalitdit ist dabei das Fehlen von “spukhaften Fernwirkungen” (Einstein) zwischen rdumlich
getrennten Systemteilen zu verstehen: alle Einwirkungen eines Teilsystems auf ein rdumlich entfern-
tes Teilsystem konnen sich hochstens mit Lichtgeschwindigkeit ausbreiten (und werden durch eine
Wechselwirkung vermittelt).

Die Verletzung der Bellschen Ungleichung kann im Experiment (“Bell test experiment”) tiberpriift
werden. Am bekanntesten sind die von |Aspect et al.| (1982) durchgefiihrten Photonen-Experimente,
die erstmals schliissig die von der Quantenmechanik vorhergesagte Verletzung der Bellschen Unglei-
chung bestitigten. In jlingerer Zeit wurden von |Gisin et al.|(2008) Prazisionsmessungen durchgefiihrt,
in denen die Entfernung zwischen zwei Teilsystemen fast 20km betrug und als untere Schranke fiir die
Ausbreitung einer moglichen Fernwirkung ein Vielfaches der Lichtgeschwindigkeit ermittelt wurde
(weitere aktuelle Experimente s. thebigbelltest.org).

Wir behandeln im Folgenden eine etwas abgewandelte Form der Ungleichung von Bells Originalar-
beit, die sogenannte Bell-CHSH-Ungleichung, die auf J. F. Clauser, M. A. Horne, A. Shimony, R. A.
Holt (1969)) zuriickgeht und zeigen, dass sie als Satz der klassischen Wahrscheinlichkeitstheorie for-
muliert werden kann. In der Quantenmechanik gilt in entsprechenden Zusammenhéngen die schwi-
chere Tsirelson-Ungleichung (Cirel’son, |1980). Ein Beispiel zeigt dann, dass quantenmechanische
Systeme die Bell-CHSH-Ungleichung verletzen konnen, aber dennoch die Tsirelson-Ungleichung er-
fiillen. Das eigentliche Theorem, d.h. der Zusammenhang mit der Nicht-Lokalitit, wird schlielich
mit Hilfe klassischer Automaten verstindlich gemacht.
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1 Bell-CHSH-Experiment

Auch wenn die Bell-CHSH-Ungleichung einen abstrakten Satz der Wahrscheinlichkeitstheorie dar-
stellt, ist es sinnvoll, das entsprechende Gedankenexperiment an den Anfang zu stellen. Der grund-
satzliche Aufbau des Experiments stammt von Bohm| (1951)), der damit die Darstellung der EPR-
Problematik vereinfachte, indem er Spin-Messungen an einem Teilchenpaar mit Hilfe von Stern-
Gerlach-Apparaturen behandelte:

Eine Teilchenquelle S erzeugt Teilchenpaare, die in entgegengesetzter Richtung ausgesendet werden.
In einer gewissen Entfernung stehen auf beiden Seiten Magnete M 4, M, die von den Experimenta-
toren Alice und Bob zur Spinmessung verwendet werden. Diese Magneten spalten den Teilchenstrahl
in zwei Teilstrahlen auf, die den Spinkomponenten der Teilchen (+1, —1) entsprechen.

Alice und Bob konnen ihre Magneten M 4, Mp in unterschiedliche Richtungen drehen und so die
Spinkomponenten der Teilchen in verschiedenen Richtungen messen, indem sie an den Schirmen
S, Sp detektieren, in welchem Teilstrahl (+1, —1) ein Teilchen auftrifft.

Im EPR-Bohm-Experiment messen Alice und Bob wahlweise eine Spinkomponente in je zwei ver-
schiedenen Raumrichtungen. Man kann dies abstrakt als die Messung von je zwei Observablen A, A;
bzw. By, By betrachten, die jeweils nur die Werte —1, +1 annehmen konnen.

Die Observablen Ay und A; bzw. By und B; konnen nicht gleichzeitig gemessen werden. Alice muss
sich vor jeder Messung durch Drehung des Magneten entscheiden, ob sie Ay oder A; messen will,
ebenso Bob mit B, oder B;. Je nach Wahl von Alice und Bob wird also in einem Einzelexperiment
mit einem Teilchenpaar eines der folgenden Observablenpaare gemessen:

(A07 BO)a (Ala BO)7 (A07 Bl)? (Ab Bl)
Ein Beispiel fiir die Ergebnisse eines Einzelexperiments wire
(Ao, B1) = (=1,1)

In der Wiederholung der Einzelexperimente in Messreihen mit unterschiedlicher Auswahl der Ob-
servablen kann man fiir alle vier Observablenpaare die relativen Héufigkeiten der Messergebnisse
ermitteln, aber auch die Mittelwerte der Produkte AyBy, A1 By, Ao, B1, A1, B1, die jeweils die Kor-
relation angeben und im Folgenden genauer untersucht werden. Im Idealfall sind die Auswahlen der
beiden Experimentatoren dabei stochastisch unabhingig voneinander und gleichverteilt, was in der
Praxis durch Zufallsgeneratoren sichergesteltl wird.

Bohm betrachtete Spinmessungen in X - und Z-Richtung an einem Zustand mit Gesamtspin 0. Wenn
Alice und Bob in diesem Fall die gleiche Spinobservable messen, sind die Ergebnisse perfekt anti-
korreliert (Produkt —1), andernfalls sind ide Ergebnisse stochstisch unabhéngig.



2 Bell-CHSH-Ungleichung fiir klassische Zufallsvariablen

Wenn man das Experiment im Rahmen der klassischen statistischen Mechanik behandelte, wire es na-
heliegend, die Teilchenpaare als zwei starre Korper zu betrachten und die vier GroBen Ay, A1, By, By
als Funktionen des Drehimpulses dieser Korper (vgl. |Peres| (1995)). Dies ist nicht die einzig moglich
Beschreibung, die Details eines solchen Beschreibung spielen aber fiir die folgenden Uberlegungen
keine Rolle. Wichtig ist nur: Wie alle mechanischen Groflen wiren Ag, A, By, B; Funktionen auf
dem Phasenraum des Gesamtsystems, dessen Punkte die vollstindige Zustandsbeschreibung darstel-

len]

Mathematisch - im Rahmen der klassischen Wahrscheinlichkeitstheorie - betrachtet handelt es sich
bei den vier Grofien Ay, Ay, By, B; dann um Zufallsvariablen (borelmessbare Funktionen) auf einem
Ereignisraum (dem Phasenraum und die o-Algebra der Borelmengen) und es gilt die Bell-CHSH-
Ungleichung:

Ist ) eine Menge, A eine o-Algebra in Q und sind ag : 0 - R,a; : Q@ - Rbg: Q2 —> R, b : Q=R
reelle Zufallsvariablen auf dem Ereignisraum (), A), die nur die Werte —1,+1 annehmen, d.h. fiir
alle w € ) gilt

|ao(w)| = |a1(w)| = |bo(w)| = |br(w)| =1 (2.1)

dann gilt fiir jedes Wahrscheinlichkeitsmafs 1 auf (2, A) die Bell-CHSH-Ungleichung

‘<Cbobo + a0b1 + a1b0 — a1b1>u‘§ 2 (22)

wobel

<x>u = /x(w)d,u
Q
den Erwartungswert von x bzgl. des WahrscheinlichkeitsmaBes j. bezeichnet.

Beweis: Sei 1 ein Wahrscheinlichkeitsmaf auf auf (€2, .A). Fiir alle w € 2 gilt
c(w) = ao(w)bo(w) + ao(w)b1(w) + a1 (w)bo(w) — a1 (w)bi (w) = (2.3)

= ap(w) (bo(w) + b1 (w)) + a1(w) (bo(w) — by (w)) = £2 2.4

und daher fiir den Erwartungswert

‘<C>u‘ = ‘/c(w)du| < /}c(a})‘du = /Qd,u =2 (2.5)
Q Q Q

Bemerkungen

1. Die Ungleichung gilt ebenfalls, wenn die Funktionen ag, aq, by, b; Werte im abgeschlossenen
Intervall [—1, 1] annehmen kénnen.

'Die Annahme eines gemeinsamen Wahrscheinlichkeitsraum ist nicht trivial. Sie liegt aber der gesamten klassischen
statistischen Mechanik und der dort verwendeten Definition physikalischer Groen zugrunde.



2. Wegen (2.4)) gilt auch die folgende verwandte Ungleichung

|— Z ao(wi)bo(wr) + ao(wr)bi (wi) + ar(wi)bo(wr) — a1 (wi)bi (wy))] < 2 (2.6)
k=1

fiir beliebige n Einzelfille w;...w, € (). Es handelt sich dabei um keine wahrscheinlichkeits-
theoretische Aussage, sondern um eine exakte, wobei nicht die Messbarkeit der Funktionen
ag, a1, by, by vorausgesetzt werden muss.

3 Tsirelson-Ungleichung fiir quantenmechanische Observablen

Wenn man das Experiment im Rahmen der Quantenmechanik beschreibt, werden die vier Obser-
vablen Ag, Ay, By, B durch selbstadjungierte Operatoren in einem Hilbertraum # dargestellt. Die
Annahme, dass alle vier Observablen nur die Werte —1 und +1 annehmen konnen, bedeutet dann,
dass das Spektrum dieser Operatoren nur diese beiden Werte umfasst.

Es gilt dann im Allgemeinen nicht die Bell-CHSH-Ungleichung, sondern eine schwichere Unglei-
chung, die sogenannte Tsirelson-Ungleichung (Cirel’son, [1980).

Ist H ein Hilbertraum und sind Ay, Ay, By, B1 € L(H) selbstadjungierte Operatoren auf H, die ein
Eigenwertspektum mit den Werten —1,+1 haben

O'(A()) = O'(Al) = O'(B()) = O'(Bl) = {—]_, +].} (31)
dann gilt fiir jeden Einheitsvektor 1) € H die Tsirelson-Ungleichung
‘<¢, (AoBoy + AoB1 + A1 By — A131)¢>’ <2V2 (3.2)

Gelten die Vertauschungsrelationen
[AOJBO] = [A()’Bl] = [A17B0] = [AIJBI] == O (33)

dann sind die Produkte AyBy, AgB1, A1 By, A1 B; und auch deren Summe selbstadjungierte Opera-
toren und man kann das Skalarprodukt in (3.2) als Erwartungswert einer Observablen im Zustand
1) € H betrachten

[((AoBoy + AoBy + A1 By — A131)>w} < 2V2 (3.4)

Beweis: Wir beweisen nur den physikalisch relevanten Spezialfall (3.4)(Landaul, [1987). Jeder selbst-
adjungierte Operator A € L£(H) mit dem Spektrum o(A) = {—1,+1} kann in der Form A =
2P — 1 geschrieben werden mit einem Projektionsoperator P = PT = P? € L(#). Daraus folgt
A? = 1 und ||AH = 1. Einfaches Ausmultiplizieren und Anwendung von ergibt dann fiir
C = AyBy+ AgBy + A1 By — A1 By

02 == 4 + [Ao, Al] [Bo, Bl] (35)

Daraus folgt aber die Abschitzung

[l < y/a+ (A, A (B Bi]| (3.6)
Mit HAOH = HAlH = ||BOH = HBIH = 1 und H Ap, A1][By, Bi) H < 4 ergibt sich dann

o]l < v8 (3.7)
Daraus folgt aber wegen | <¢, C’w> | < ||C H fiir alle Einheitsvektoren ¢ € H die Tsirelson-Ungleichung.
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Bemerkungen

1.

Die Ungleichung gilt auch fiir Mischungen, da sie fiir alle Komponenten einer Mischung gilt.
Daher gilt fiir beliebige statistische Operatoren W € L(H)

r(WC)| < 2v2 (3.8)

Kommutieren alle Operatoren paarweise, kann die Ungleichung zur Bell-CHSH-Ungleichung
verschirft werden:

[Ag, Bo] = [Ao, B1] = [A1, Bo] = [A1, B1| = [Ao, A1 = [Bo, B1] =0 (3.9)

= [{C),| =2

wie man an (3.6) sofort sieht.

. Eine notwendige Bedingung fiir die Verletzung der Bell-CHSH-Ungleichung, d.h. |<C’ > ¢’ > 2

ist also
[Ao, A1)[Bo, B1] # 0 (3.10)

Wie [Landau| (1987) zeigt, ist diese Bedingung auch hinreichend. Der Eigenvektor von C' zum
groften Eigenwert ist ein geeigneter Zustand des Systems.

. Die Vertauschungsrelationen (3.3)) sind natiirlich dann erfiillt, wenn das System H =H 4 ® Hp

aus zwei Teilsystemen H 4, H 5 zusammengesetzt ist, sodass

Ag=Apa®1p, A1 = A1 a®1p,By=14® By g, B1 =14 ® By p (3.11)

In einem zusammengesetzten System gilt aber fiir alle Produktzustinde ¥4 ® ¥g € Ha ® Hp

|((AgBo + AgB1 + A1 By — A1 By)) (3.12)

¢A®¢B| <2

denn (4 ® ¥p, (AB)a @ ¥p) = (Va, Aa)(¥p, Bibp). Da diese Erwartungswerte im In-
tervall [—1, 1] liegen, gilt fiir die Produkte immer die Bell-CHSH-Ungleichung.

. In einem zusammengesetzten System ist daher das Vorliegen eines verschrdinkten Zustands eine

notwendige Bedingung fiir die Verletzung der Bell-CHSH-Ungleichung.

4 Verletzung der Bell-CHSH-Ungleichung an quantenmechani-

schen Systemen

Die Tsirelson-Ungleichung lisst es fiir Quantensysteme zu, dass Erwartungswerte auf der linken Seite
stehen, die groBer als 2 sind und somit die Bell-CHSH-Ungleichung verletzen. Wir werden jetzt ein
solches Beispiel konstruieren.



4.1 ...in der Theorie

Wir betrachten ein aus zwei Spin-1/2-Teilchen zusammengesetztes System in dem Hilbertraunﬂ
H = C* ® C? Die folgenden Matrizen aus £(C?) sind selbstadjungiert und haben die Eigenwer-

te {—1,+1}: (1 0)
Z=\o0 -1

()

U- L (_1 _1) — —L(XJFZ)

V2\-1 1) 7R
1 /-1 1 1
V=53 )

Sie stellen die Observablen fiir die Spinkomponente eines Spin-1/2-Teilchens in unterschiedlichen
Raumrichtungen dar: z-Richtung, z-Richtung und +45° in der x-z-Ebene.

Wir betrachten jetzt am zusammengesetzten System den verschrinkten Zustand

1
= =¥z & z— zf® z
(0 \/5(<p+ Poe — Poe @ P2)

wobei ¢, , p,_ € C? die Eigenzustinde von Z darstellen mit

1
0
ngzi g —szi = — ( 1 ) (4.2)
sowie die Observablen
Ay=X®1
Al=7®1
By=1U
B =1®V

Diese Observablen haben natiirlich ebenfalls die Eigenwerte {+1, —1} und erfiillen die Vertauschungs-
relationen, sodass die Produkte AgBg, AgB1, A1 By, A1 B; ebenfalls Observablen definieren. Fiir die
Erwartungswerte im Zustand 1) ergibt sich

1
(¢, AoBoth) = (0, X @UY) = (o4 @ o = 0 @2y, Xpoy @ U = X @Upiy)) =

(_<902—a ngz+> - <sz+a Utpz—>) = % (‘I’%l + %1) = %

1
2

und analog

(6, AoBtb) = %

2Wir betrachten nur die Spinkomponenten, nicht die Ortskomponenten.
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1

(1, A\ Byh) = 7
1
(¢, Ay Byip) = 5
und daher insgesamt
4
((AoBo + AoBi + ABy — AiBy)) = —= = 22~ 2,8 (4.3)

V2

Das bedeutet aber, die Erwartungswerte im Zustand 1 verletzen die Bell-CHSH-Ungleichung, denn
es gilt
|((AoBo + AoB1 + A1 By — A131)>w] > 2 (4.4)

Dieses Beispiel zeigt aber auch, dass die Tsirelson-Schranke 24/2 in der Quantenmechanik tatsédchlich
erreicht wird und somit im allgemeinen Fall keine stirkere Ungleichung angegeben werden kann.

4.2 ...im Experiment

Die von Bell errechnete Verletzung der Bell-CHSH-Ungleichung durch quantenmechanische Systeme
wurde vielfach experimentell bestitigt. Am bekanntesten sind die Photonen-Experimente von |Aspect
et al.| (1982), in denen dies erstmalig schliissig nachgewiesen wurde. Mittlerweile ist eine Vielzahl
unterschiedlicher Varianten mit verschiedenen Teilchen getestet worden.

5 Einige einfache Folgerungen

5.1 Unmaoglichkeit des Werterealismus fiir alle Observablen

Die Bell-CHSH-Ungleichung wire auch dann erfiillt, wenn die vier Observablen A, Ay, By, By im-
mer - auch ohne Messung - einen Wert —1 oder +1 hitten, der durch die Messung einfach “abgelesen”
wird. Offensichtlich ist dies in dem oben behandelten verschriankten Zustand nicht der Fall: Es ist aus-
geschlossen, dass die Observablen Aj, A, By, B; im Zustand ) unabhingig von einer Messung einen
definierten Wert haben, der bei einer Messung unverindert abgelesen wird, sonst konnte (4.3)) nicht
gelten. In diesem Sinne ist die Quantenmechanik keine realistische Theorie: Die Werte der Observa-
blen konnen i.A. nicht unabhéngig von der Messung bestehen.

Dies ist ein dhnliches Resultat, wie es die Theoreme von v. Neumann, Gleason und Kochen-Specker
nahelege

5.2 Inkompatibilitit zwischen Quantenmechanik und klassischer Wahrschein-
lichkeitstheorie

Die klassische Wahrscheinlichkeitstheorie ist offensichtlich nicht ohne weiteres kompatibel mit der
Quantenmechanik. Die vier im Experiment gemessenen Groen Ay, A1, By, By konnen zwar als quan-
tenmechanische Observablen behandelt werden, aber nicht als Funktionen auf dem Phasenraum der

3Mit dem Unterschied, dass dies hier nur fiir solche Zustinde gefolgert werden kann, die die Bell-CHSH-Ungleichung
verletzen.



klassischen statistischen Mechanik, d.h. als Zufallsvariablen auf einem Wahrscheinlichkeitsrauny]
denn dann miisste die Bell-CHSH-Ungleichung fiir alle Zustinde erfiillt werden.

6 Lokalitit und Bell-CHSH-Ungleichung

Aber diese Folgerungen waren Bell schon durch andere Gegebenheiten bekannt (vgl. Bell, |1966)
und nicht der wesentliche Punkt, der zu seinem Theorem fiihrte. Das wichtige neue Resultat war
die Nicht-Lokalitit aller realistischen Theorien, die die quantenmechanischen Ergebnisse erkldren
konnen. Dabei dachte Bell an Theorien wie die Bohmsche Mechanik, die einen eigenen Satz von
realen GroBen definieren, der aber nicht alle quantenmechanischen Observablen umfasst.

6.1 Simulation des Bell-CHSH-Experiments an einem Automaten

In einer realistischen Theorie werden die physikalischen Systeme mit Hilfe von Gré8en beschrieben,
die unabhiingig von Messungen immer einen definierten Wert haben. Zwischen den Gro3en existieren
gewisse Abhingigkeiten, die durch Funktionen beschrieben werden.

Da der entscheidende Punkt in der Argumentation leicht iibersehen wird, wollen wir ihn ausfiihr-
lich darlegen, indem wir den Versuchsaufbau als Automaten behandeln, der nach den Eingaben der
“Experimentatoren” jeweils “Messwerte” ausgibt. Man kann dabei an ein elektronisches Gerét (Spiel-
automaten) oder einen Computer denken, an dem das Experiment simuliert wird. Die “Lokalitdt” wird
mittels der Frage untersucht, inwieweit man den Automaten in “Teilautomaten” (mehrere Kistchen
statt einem) zerlegen kann und welche Datenverbindungen (Verbindungskabel) dabei bendtigt wer-
den.

Ein Automat, der das Experiment simuliert, sollte folgende Ein- und Ausgédnge haben:

|+ -

v s

Die zwei Eingénge 74,75 stellen die Richtungsauswahl der Experimentatoren A, B dar und kénnen
jeweils zwei Werte, 0 oder 1, annehmen. Die zwei Ausgénge 04, op geben die Messergebnisse wieder
und konnen die Werte +1 oder —1 anzeigen.

Ein Eingang A soll alle weiteren Parameter (Teilcheneigenschaften, unbekannte bzw. verborgene Pa-
rameter der Versuchsanordnung, innere Automatenzustinde) zusammenfasserﬂ Wir machen keine

“Trivialerweise kann jede Messung einer einzelnen Observablen bzw. die gemeinsame Messung eines Observablen-
paares als Messung von Zufallsvariablen auf einem Wahrscheinlichkeitsraum beschrieben werden. Nur fiir alle vier Obser-
vablen, die ja nicht gemeinsam gemessen werden konnen, kann kein gemeinsamer Wahrscheinlichkeitsraum angegeben
werden, in dem alle Observablen als Zufallsvariablen dargestellt werden.

SMan kann diesen Parameter weiter aufteilen z.B in A4, A\p ohne etwas an den folgenden Uberlegungen zu #ndern.
Der Parameter A kann auch innere Automatenzustinde \; umfassen, z.B. A = (Ag, Ap, \;) € A
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Annahme iiber den Wertebereich A an diesem Eingang (eine Moglichkeit wire R™ mit n € N wie in
der klassischen statistischen Mechanik), gehen aber davon aus, dass es eine passende o-Algebra A
gibt, sodass (A, A) ein Ereignisraum ist und wir die Wahrscheinlichkeitstheorie anwenden konnen?}

In einem klassischen IZ] deterministischen Automaten gilt: Die Ausgabe ist eine Funktion der Eingaben
und des inneren Zustands des Automaten.

In unserem Fall sind angezeigten Ausgabewerte an den beiden Ausgidnge 04, 0p also Funktionerﬁ der
Eingaben i 4, 75 und von

04 : {O, 1} X {0, 1} x A — {—1,—|—1}, (iA,iB,)\) — OA(iA,iB,)\) (6.1)

OB : {Oa 1} X {07 1} XA — {_17 +1}7 (iAaiBa )‘) = OB(iA7iBa )‘) (62)

6.2 Ablauf der Simulation

Man kann in einer Computersimulation alle Eingédnge inkl. A mit den Ausgingen von unabhéngigen
Zufallsgeneratoren verbinden. Bei jedem Durchlauf des Experiments werden dann zufillige Werte fiir
A und 74,1 eingegeben, anschlieend wird ein Wertepaar an den Ausgédngen 04, op abgelesen und
das Produkt 0405 notiert.

Je nach Eingabe fiir 7 4, ¢ 5 kann man an den Ausgéngen eines der vier Wertepaare
[04(0,0,X),05(0,0,\)],...;[0a(1,1,X),05(1,1,\)]

(bei jeweils unbekanntem \) ablesen. Um die Ergebnisse mit der Bell-CHSH-Ungleichung zu ver-
gleichen, ermittelt man in vielen Wiederholungen mit unterschiedlichen Eingaben die Mittelwert der
Produkte

04(0,0, No5(0,0, V), ... oa(L, L, Nog(L, 1, \)

wobei die Eingaben fiir 74,75 von den Zufallsgeneratoren unabhéngig und gleichverteilt generiert
werden. SchlieBlich wird fiir die Bell-CHSH-Ungleichung der Mittelwert

¢ =04(0,0,2\)0p5(0,0,A) —04(0,1,X)0p(0,1,\) +04(1,0,\)op(1,0,) + 0a(1,1,N)op(1,1, )
(6.3)
berechnet und als Messwert bzw. Schitzwert des theoretischen Erwartungswertes betrachtet.

Beispiel Mit A = {0, 1} konnte ein einfacher Automat durch die folgenden Funktionen definiert
werden
OA(iA,iB,)\) ZQiA— 1 (64)

OB(iA,iB, /\) = (]_ - 223)(2)\ - 1) (65)

Die Wertetabelle zeigt 8 Wiederholungen des Experiments mit diesem Automaten

®Ein Bedingung, die in endlichen Automaten trivialerweise stets erfiillt ist.

"Quantenschaltkreise (quantum circuits), wie sie in Quantencomputern Verwendung finden, miissen an dieser Stelle
explizit ausgeschlossen werden.

8wobei wir die A-Messbarkeit der Funktionen voraussetzen.

%0edA werden innere Automatenzustinde ggf. zu \ gezihlt



’Nr.‘iA‘iB‘)\‘OA‘OB‘OAOB‘
1 O[]0 ]O0]|-1]1 -1
2 01 0|-1]-1 1
30170011 1
4 (1|10 1 |-1] -1
51010 1]-1]-1 1
6 [0 |1 |1]-1]|1 -1
7 17011 -1 -1
8 1|1 (1]1 1 1

und allen moglichen Eingabekombinationen. Dabei ergibt sich ¢ = 0, was bei einer groen Anzahl
von Wiederholungen mit zufilligen, unabhingigen und gleichverteilten Eingaben fiir i 4,75, A eben-
falls angenéhert herauskommen sollte.

6.3 Eine hinreichende Bedingung fiir die Erfiillung der Bell-CHSH-Ungleichung

Immer dann, wenn die Funktionen o4, op nicht von der Eingabe der Gegenseite abhingen, d.h. wenn
fiiralleia,ip € {0,1} und alle \ € A gilt

OA(iA,O, /\) :OA(iA,l,)\) (66)

OB(OviBaA) = 03(172.37)\) (67)

konnen die Ergebnisse an den Ausgédngen durch vier Funktionen von A alleine (oder durch Konstan-
ten) dargestellt werden

ap: A — {—=1,+1}, A= ag(A) = 04(0,0, ) = 04(0,1, A

)
a; A= {=1,+1} A= a1(A) = 0a(1,0,A) = 04(1,1, )
bo: A — {—1,+1}, A = by(A) = 05(0,0,)\) = 0p(1,0, )
by : A= {—1,+1}, A = b1 (A) = 05(0,1,\) = 0p(1,1, )

Diese Funktionen (oder Konstanten) sind aber nichts anderes als 4 Zufallsvariablen ag, aq, by, b; auf
dem Ereignisraum (A, A)Iﬂ die nur die Werte +1 und —1 annehmen konnen, sodass der Erwartungs-
wert

‘<C>u‘ = ‘<aobo + agby + a1by — @1bl>#} <2

fiir jedes Wahrscheinlichkeitsmal y auf (A, A) die Bell-CHSH-Ungleichung erfiillen muss.

Den zugehorigen Automaten kann man dann immer in Teilautomaten so zerlegen, dass man ohne
Verbindung von A nach B und B nach A auskommt, da o4 nicht von iz und og nicht von ¢ 4 abhéngt,
wie das folgende Diagramm zeigt:

10 An dieser Stelle setzen wir die Borelmessbarkeit der Funktionen voraus. Abgesehen von der Tatsache, dass zumindest
bei endlichen Automaten die Funktionen immer messbar sind, zeigt[2.4] dass man den Zusammenhang auch allgemeiner,
ohne messbare Funktionen, beweisen kann.
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Beispiel Im obigen Beispiel ist diese Bedingung durch die Funktionen (6.4) erfiillt und es ergibt
sich fiir die vier Zufallsvariablen
ag = —]., a; = 1

bp=2\—1, by =1— 2\

6.4 Eine notwendige Bedingung fiir die Verletzung der Bell-CHSH-Ungleichung

Soll dagegen die Bell-CHSH-Ungleichung von einem klassischen deterministischen Automaten ver-
letzt werden, so muss im Umkehrschluss das Ergebnis o, auch von der Eingabe ig abhdngen oder
das Ergebnis og von der Eingabe 1 4.

Das bedeutet aber, dass bei den Teilautomaten immer eine Verbindung von A nach B oder umgekehrt
bestehen muss, wie sie im Schaltbild durch c 4 g eingetragen ist (wobei eine Richtung bereits ausreicht,
s.u. Beispiel).

Die Ausginge der Schaltung konnen dann nicht durch vier Zufallsvariablen auf einem Ereignisraum
dargestellt werden. Man bendtigt im Maximalfall, wenn alle Ergebnisse von beiden Eingaben i 4,5
anhingen, acht Funktionen von A
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also acht Zufallsvariablen auf dem Ereignisraum (A, .A). Fiir jedes Wahrscheinlichkeitsma$ ;o auf
(A, A) gilt dann fiir den Erwartungswert

}<C>u} = |<(10,obo,o + ap1bo1 + aiobip — (11,151,1>u‘ <4 (6.8)

wobei der Wert 4 auch erreicht werden kann, wie das folgende Beispiel zeigt.

Beispiel Ein maximale Verletzung der Bell-CHSH-Ungleichung wird durch folgende Funktionen
generiert

OA(iA,iB,/\) =1
OB(iA,iB,)\) =1- QiAiB

Dabei gilt dann
ago =1, ap1 =1, a1p=1, a11 =1

boo=1,bp1=1 bip=1, by =—1

und somit konstant ¢ = 4.

6.5 Bells Theorem

Diese Uberlegungen zeigen, dass es keinen klassischen, deterministischen Automaten geben kann, der
fiir die Erwartungswerte der Ausgangsgrof3en die Bell-CHSH-Ungleichung verletzt und ohne Verbin-
dung zwischen A und B auskommt. Das gleiche Ergebnis gilt auch fiir stochastische Automaten (die
immer durch deterministische Automaten mit zusétzlichen Eingingen fiir zuféllige Eingaben durch
Zufallsgeneratoren, simuliert werden konnen) und eben auch fiir alle klassisch-physikalischen Me-
chanismen.

In die Sprache der Physik zuriickiibersetzt hei3t das: Es ist nicht moglich, in einer realistischen Theo-
rie mit funktionalen Abhingigkeiten die Ergebnisse der Bell-CHSH-Experimente zu beschreiben,
wenn nicht die Ergebnisse von A auch von der Auswahl von B abhédngen oder umgekehrt.

Dies ergibt dann Bells Theorem: Keine physikalische Theorie, die realistisch und lokal ist, kann in
allen statistischen Aussagen mit der Quantenmechanik iibereinstimmen.

Bemerkungen

1. Sind die Messungen und die entsprechenden Auswahlentscheidungen von A und B im Sin-
ne der Relativitiitstheorie raumartig voneinander getrennt, wie in Gisins Experimenten (Gisin
et al., 2008)), so muss fiir jede realistische Theorie eine “spukhafte Fernwirkung” zwischen A
und B angenommen werden, die nach den experimentellen Daten mindestens mit 10000facher
Lichtgeschwindigkeit iibertragen wird.

2. Dies fiihrt zu der Frage, ob man nicht unter Ausnutzung dieser Effekte Signale mit Uberlichtge-
schwindigkeit libertragen kann. Das No-Communication-Theorem zeigt, dass dies unmoglich
ist (vgl. Peres and Ternol 2004). Speziell betrachtet man dazu die quantenmechanischen Er-
wartungswerte der Messergebnisse von B, unter der Bedingung, dass A eine der verschiedenen
moglichen Messungen (oder keine) vornimmt, und stellt fest, dass sich diese Erwartungswerte
unter diesen Bedingungen nicht @ndern.
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3. In der Bohmschen Theorie, die Bell bei der Aufstellung des Theorems untersuchte, erfolgt
die Fernwirkung instantan vermittelt durch die Wellenfunktion des Gesamtsystems, die durch
Wechselwirkung mit der Versuchsapparatur, z.B. den Stern-Gerlach-Magneten, verdndert wird.
Die Auswahl von A schlégt sich in einer verinderten lokalen Wechselwirkung nieder, die aber
die Wellenfunktion auch fiir B dndert und somit das Quantenpotential fiir das zugehorige Teil-
chen. In anderen realistischen Theorien (Nelsons Stochastischer Mechanik, Catichas Entropi-
scher Dynamik) bleibt der Fernwirkungsmechanismus unklar. Alle Wahrscheinlichkeiten fol-
gen einfach den jeweiligen Gesetzen, die die gleichen Resultate liefern wie die QM.

4. Die Verletzung der Bellschen Ungleichung ohne Wechselwirkung zwischen entfernten Teil-
systemen ist eine besondere Eigenschaft der QM. Im Zusammenhang mit Bells Theorem wird
oftmals formuliert, dass die QM nicht-lokal sei. Dies hdangt natiirlich von der Definition von Lo-
kalitdt und der Interpretation der Wellenfunktion ab. Nicht-lokale Korrelationen zwischen Teil-
systemen mit einer gemeinsamen Vergangenheit gibt es auch in klassischen Theorien. Akzep-
tiert man die der QM zugrundeliegende (nicht-realistische) verallgemeinerte Wahrscheinlich-
keitstheorie, so kann man auch die QM als lokale Theorie verstehen, die ohne Wechselwirkung
zwischen A und B eben Korrelationen bis zur Tsirelsonschranke zulidsst. Mit Wechselwirkung
zw. A und B, genauer mit einer unitiren Transformation im Produkthilbertraum, die kein Pro-
dukt von unitdren Transformationen der Faktorhilbertrdume ist, kann auch ein Quantenautomat
die Tsirelsonschranke bis zum Wert 4 iiberschreiten.

5. Bei den Folgerungen, die zu Bells Theorem fithren, wird stillschweigend eine weitere Voraus-
setzung gemacht, namlich dass A und B unabhingig - voneinander und von den Teilchen bzw.
- ihre Auswabhl treffen konnen. Automatentheoretisch ist dies kein Problem, metaphysisch ldsst
sich allerdings der Einwand formulieren, dass in einer vollstindig determinierten Welt diese
Unabhingigkeit nicht gegeben sein muss, zumal A verborgene, unbeobachtbare Parameter um-
fasst. Diese Einschrankungen der Wahlmoglichkeiten der Experimentatoren bezeichnet man
auch als Superdeterminismus. Damit ist moglich, die Bellsche Ungleichung auch ohne ’reale’
Fernwirkung zu verletzten, wenn die gemeinsame Determination die notwendigen Abhéngig-
keiten der Eingabewerte von A und B erzeugt. Im obigen Beispiel mit “lokalen” Funktionen
liefern aufeinander abgestimmte Werte von A und 74, 5 nach der folgenden Tabelle einen

Wert von ¢ = —4, selbst wenn die Eingaben fiir 7 4 und 73 untereinander stochastisch unabhin-
gig sind.
Lia [is | A [ 04| op [ 0405 |

O[O0 (1]-1]-1 1

O[1/(0]-1]-1 1

110101 1 1

1|10 1]-1 -1

Die Frage bleibt allerdings, ob man in einem solchen Fall noch von Lokalitédt sprechen soll-
te, denn indirekt iiber A hingen die Ergebnisse dann nicht-lokal von ¢4, 15 ab.

In Experimenten wurde dieses Thema insofern aufgegriffen, als dass man die Richtungsent-
scheidungen in Abhéngigkeit von interstellaren Photonen getroffen hat, deren Emission Jahr-
hunderte zuriicklag (Handsteiner et al.|[2017). Es ist schwer vorstellbar, dass diese mit den
Emissionen der irdischen Teilchenquelle korreliert sind.
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