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Die berühmte Arbeit von Einstein, Podolsky und Rosen (EPR 1935) endet mit der Feststellung: “Wäh-
rend wir somit gezeigt haben, dass die Wellenfunktion keine vollständige Beschreibung der physika-
lischen Realität liefert, lassen wir die Frage offen, ob eine solche Beschreibung existiert oder nicht.
Wir glauben jedoch, dass eine solche Theorie möglich ist.”

Dies wirft die Frage auf, ob die Quantenmechanik eine unvollständige Theorie ist, die durch die
Einführung weiterer Größen so vervollständigt werden kann, dass eine realistische Theorie entsteht,
in der alle Größen unabhängig von Beobachtungen eindeutig definierte Werte haben.

Nun stellt eine Reihe von Theoremen (Kochen-Specker, v. Neumann/Gleason) klar, dass eine solche
realistische Theorie nicht allen quantenmechanischen Observablen zu jedem Zeitpunkt bestimmte
Werte zuordnen kann. Dies macht aber eine realistische Theorie nicht unmöglich: In der Bohmschen
Mechanik haben beispielsweise nur die Teilchenorte immer bestimmte Werte, andere (mit dem Ort
nicht kommutierende) quantenmechanischen Observablen sind dagegen außerhalb ihrer Messungen
undefiniert und lediglich als Produkte der entsprechenden Messvorrichtungen (und der Wellenfunkti-
on) anzusehen.

In der Auseinandersetzung mit diesem Thema Bell (1964, 1966) stellte J. S. Bell die nach ihm be-
nannte Ungleichung auf, die in allen realistischen Theorien gilt, aber in der Quantenmechanik - unter
gewissen Bedingungen - verletzt wird. Die Folgerung, die auch als Bells Theorem bezeichnet wird,
lautet nach Shimony (2016):

Keine physikalische Theorie, die realistisch und lokal ist, kann in allen statistischen Aussagen mit der
Quantenmechanik übereinstimmen.

Unter Lokalität ist dabei das Fehlen von “spukhaften Fernwirkungen” (Einstein) zwischen räumlich
getrennten Systemteilen zu verstehen: alle Einwirkungen eines Teilsystems auf ein räumlich entfern-
tes Teilsystem können sich höchstens mit Lichtgeschwindigkeit ausbreiten (und werden durch eine
Wechselwirkung vermittelt).

Die Verletzung der Bellschen Ungleichung kann im Experiment (“Bell test experiment”) überprüft
werden. Am bekanntesten sind die von Aspect et al. (1982) durchgeführten Photonen-Experimente,
die erstmals schlüssig die von der Quantenmechanik vorhergesagte Verletzung der Bellschen Unglei-
chung bestätigten. In jüngerer Zeit wurden von Gisin et al. (2008) Präzisionsmessungen durchgeführt,
in denen die Entfernung zwischen zwei Teilsystemen fast 20km betrug und als untere Schranke für die
Ausbreitung einer möglichen Fernwirkung ein Vielfaches der Lichtgeschwindigkeit ermittelt wurde
(weitere aktuelle Experimente s. thebigbelltest.org).

Wir behandeln im Folgenden eine etwas abgewandelte Form der Ungleichung von Bells Originalar-
beit, die sogenannte Bell-CHSH-Ungleichung, die auf J. F. Clauser, M. A. Horne, A. Shimony, R. A.
Holt (1969) zurückgeht und zeigen, dass sie als Satz der klassischen Wahrscheinlichkeitstheorie for-
muliert werden kann. In der Quantenmechanik gilt in entsprechenden Zusammenhängen die schwä-
chere Tsirelson-Ungleichung (Cirel’son, 1980). Ein Beispiel zeigt dann, dass quantenmechanische
Systeme die Bell-CHSH-Ungleichung verletzen können, aber dennoch die Tsirelson-Ungleichung er-
füllen. Das eigentliche Theorem, d.h. der Zusammenhang mit der Nicht-Lokalität, wird schließlich
mit Hilfe klassischer Automaten verständlich gemacht.
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1 Bell-CHSH-Experiment

Auch wenn die Bell-CHSH-Ungleichung einen abstrakten Satz der Wahrscheinlichkeitstheorie dar-
stellt, ist es sinnvoll, das entsprechende Gedankenexperiment an den Anfang zu stellen. Der grund-
sätzliche Aufbau des Experiments stammt von Bohm (1951), der damit die Darstellung der EPR-
Problematik vereinfachte, indem er Spin-Messungen an einem Teilchenpaar mit Hilfe von Stern-
Gerlach-Apparaturen behandelte:

Eine Teilchenquelle S erzeugt Teilchenpaare, die in entgegengesetzter Richtung ausgesendet werden.
In einer gewissen Entfernung stehen auf beiden Seiten Magnete MA,MB, die von den Experimenta-
toren Alice und Bob zur Spinmessung verwendet werden. Diese Magneten spalten den Teilchenstrahl
in zwei Teilstrahlen auf, die den Spinkomponenten der Teilchen (+1,−1) entsprechen.

Alice und Bob können ihre Magneten MA,MB in unterschiedliche Richtungen drehen und so die
Spinkomponenten der Teilchen in verschiedenen Richtungen messen, indem sie an den Schirmen
SA, SB detektieren, in welchem Teilstrahl (+1,−1) ein Teilchen auftrifft.

Im EPR-Bohm-Experiment messen Alice und Bob wahlweise eine Spinkomponente in je zwei ver-
schiedenen Raumrichtungen. Man kann dies abstrakt als die Messung von je zwei ObservablenA0, A1

bzw. B0, B1 betrachten, die jeweils nur die Werte −1,+1 annehmen können.

Die Observablen A0 und A1 bzw. B0 und B1 können nicht gleichzeitig gemessen werden. Alice muss
sich vor jeder Messung durch Drehung des Magneten entscheiden, ob sie A0 oder A1 messen will,
ebenso Bob mit B0 oder B1. Je nach Wahl von Alice und Bob wird also in einem Einzelexperiment
mit einem Teilchenpaar eines der folgenden Observablenpaare gemessen:

(A0, B0), (A1, B0), (A0, B1), (A1, B1)

Ein Beispiel für die Ergebnisse eines Einzelexperiments wäre

(A0, B1) = (−1, 1)

In der Wiederholung der Einzelexperimente in Messreihen mit unterschiedlicher Auswahl der Ob-
servablen kann man für alle vier Observablenpaare die relativen Häufigkeiten der Messergebnisse
ermitteln, aber auch die Mittelwerte der Produkte A0B0, A1B0, A0, B1, A1, B1, die jeweils die Kor-
relation angeben und im Folgenden genauer untersucht werden. Im Idealfall sind die Auswahlen der
beiden Experimentatoren dabei stochastisch unabhängig voneinander und gleichverteilt, was in der
Praxis durch Zufallsgeneratoren sichergesteltl wird.

Bohm betrachtete Spinmessungen in X- und Z-Richtung an einem Zustand mit Gesamtspin 0. Wenn
Alice und Bob in diesem Fall die gleiche Spinobservable messen, sind die Ergebnisse perfekt anti-
korreliert (Produkt −1), andernfalls sind ide Ergebnisse stochstisch unabhängig.
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2 Bell-CHSH-Ungleichung für klassische Zufallsvariablen

Wenn man das Experiment im Rahmen der klassischen statistischen Mechanik behandelte, wäre es na-
heliegend, die Teilchenpaare als zwei starre Körper zu betrachten und die vier Größen A0, A1, B0, B1

als Funktionen des Drehimpulses dieser Körper (vgl. Peres (1995)). Dies ist nicht die einzig möglich
Beschreibung, die Details eines solchen Beschreibung spielen aber für die folgenden Überlegungen
keine Rolle. Wichtig ist nur: Wie alle mechanischen Größen wären A0, A1, B0, B1 Funktionen auf
dem Phasenraum des Gesamtsystems, dessen Punkte die vollständige Zustandsbeschreibung darstel-
len1.

Mathematisch - im Rahmen der klassischen Wahrscheinlichkeitstheorie - betrachtet handelt es sich
bei den vier Größen A0, A1, B0, B1 dann um Zufallsvariablen (borelmessbare Funktionen) auf einem
Ereignisraum (dem Phasenraum und die σ-Algebra der Borelmengen) und es gilt die Bell-CHSH-
Ungleichung:

Ist Ω eine Menge, A eine σ-Algebra in Ω und sind a0 : Ω→ R, a1 : Ω→ R, b0 : Ω→ R, b1 : Ω→ R
reelle Zufallsvariablen auf dem Ereignisraum (Ω,A), die nur die Werte −1,+1 annehmen, d.h. für
alle ω ∈ Ω gilt ∣∣a0(ω)

∣∣ =
∣∣a1(ω)

∣∣ =
∣∣b0(ω)

∣∣ =
∣∣b1(ω)

∣∣ = 1 (2.1)

dann gilt für jedes Wahrscheinlichkeitsmaß µ auf (Ω,A) die Bell-CHSH-Ungleichung

∣∣〈a0b0 + a0b1 + a1b0 − a1b1

〉
µ

∣∣≤ 2 (2.2)

wobei 〈
x
〉
µ

=

ˆ

Ω

x(ω)dµ

den Erwartungswert von x bzgl. des Wahrscheinlichkeitsmaßes µ bezeichnet.

Beweis: Sei µ ein Wahrscheinlichkeitsmaß auf auf (Ω,A). Für alle ω ∈ Ω gilt

c(ω) = a0(ω)b0(ω) + a0(ω)b1(ω) + a1(ω)b0(ω)− a1(ω)b1(ω) = (2.3)

= a0(ω) (b0(ω) + b1(ω)) + a1(ω) (b0(ω)− b1(ω)) = ±2 (2.4)

und daher für den Erwartungswert

∣∣〈c〉
µ

∣∣ =
∣∣ˆ
Ω

c(ω)dµ
∣∣ ≤ ˆ

Ω

∣∣c(ω)
∣∣dµ =

ˆ

Ω

2dµ = 2 (2.5)

Bemerkungen

1. Die Ungleichung gilt ebenfalls, wenn die Funktionen a0, a1, b0, b1 Werte im abgeschlossenen
Intervall [−1, 1] annehmen können.

1Die Annahme eines gemeinsamen Wahrscheinlichkeitsraum ist nicht trivial. Sie liegt aber der gesamten klassischen
statistischen Mechanik und der dort verwendeten Definition physikalischer Größen zugrunde.
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2. Wegen (2.4) gilt auch die folgende verwandte Ungleichung∣∣ 1
n

n∑
k=1

(a0(ωk)b0(ωk) + a0(ωk)b1(ωk) + a1(ωk)b0(ωk)− a1(ωk)b1(ωk))
∣∣ ≤ 2 (2.6)

für beliebige n Einzelfälle ω1...ωn ∈ Ω. Es handelt sich dabei um keine wahrscheinlichkeits-
theoretische Aussage, sondern um eine exakte, wobei nicht die Messbarkeit der Funktionen
a0, a1, b0, b1 vorausgesetzt werden muss.

3 Tsirelson-Ungleichung für quantenmechanische Observablen

Wenn man das Experiment im Rahmen der Quantenmechanik beschreibt, werden die vier Obser-
vablen A0, A1, B0, B1 durch selbstadjungierte Operatoren in einem Hilbertraum H dargestellt. Die
Annahme, dass alle vier Observablen nur die Werte −1 und +1 annehmen können, bedeutet dann,
dass das Spektrum dieser Operatoren nur diese beiden Werte umfasst.

Es gilt dann im Allgemeinen nicht die Bell-CHSH-Ungleichung, sondern eine schwächere Unglei-
chung, die sogenannte Tsirelson-Ungleichung (Cirel’son, 1980).

Ist H ein Hilbertraum und sind A0, A1, B0, B1 ∈ L(H) selbstadjungierte Operatoren auf H, die ein
Eigenwertspektum mit den Werten −1,+1 haben

σ(A0) = σ(A1) = σ(B0) = σ(B1) = {−1,+1} (3.1)

dann gilt für jeden Einheitsvektor ψ ∈ H die Tsirelson-Ungleichung∣∣〈ψ, (A0B0 + A0B1 + A1B0 − A1B1)ψ
〉∣∣ ≤ 2

√
2 (3.2)

Gelten die Vertauschungsrelationen

[A0, B0] = [A0, B1] = [A1, B0] = [A1, B1] = 0 (3.3)

dann sind die Produkte A0B0, A0B1, A1B0, A1B1 und auch deren Summe selbstadjungierte Opera-
toren und man kann das Skalarprodukt in (3.2) als Erwartungswert einer Observablen im Zustand
ψ ∈ H betrachten ∣∣〈(A0B0 + A0B1 + A1B0 − A1B1)

〉
ψ

∣∣ ≤ 2
√

2 (3.4)

Beweis: Wir beweisen nur den physikalisch relevanten Spezialfall (3.4)(Landau, 1987). Jeder selbst-
adjungierte Operator A ∈ L(H) mit dem Spektrum σ(A) = {−1,+1} kann in der Form A =
2P − 1 geschrieben werden mit einem Projektionsoperator P = P † = P 2 ∈ L(H). Daraus folgt
A2 = 1 und

∥∥A∥∥ = 1. Einfaches Ausmultiplizieren und Anwendung von (3.3) ergibt dann für
C = A0B0 + A0B1 + A1B0 − A1B1

C2 = 4 + [A0, A1][B0, B1] (3.5)

Daraus folgt aber die Abschätzung

∥∥C∥∥ ≤√4 +
∥∥[A0, A1][B0, B1]

∥∥ (3.6)

Mit
∥∥A0

∥∥ =
∥∥A1

∥∥ =
∥∥B0

∥∥ =
∥∥B1

∥∥ = 1 und
∥∥[A0, A1][B0, B1]

∥∥ ≤ 4 ergibt sich dann

∥∥C∥∥ ≤ √8 (3.7)

Daraus folgt aber wegen
∣∣〈ψ,Cψ〉∣∣ ≤ ∥∥C∥∥ für alle Einheitsvektorenψ ∈ H die Tsirelson-Ungleichung.
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Bemerkungen

1. Die Ungleichung gilt auch für Mischungen, da sie für alle Komponenten einer Mischung gilt.
Daher gilt für beliebige statistische Operatoren W ∈ L(H)

|tr(WC)| ≤ 2
√

2 (3.8)

2. Kommutieren alle Operatoren paarweise, kann die Ungleichung zur Bell-CHSH-Ungleichung
verschärft werden:

[A0, B0] = [A0, B1] = [A1, B0] = [A1, B1] = [A0, A1] = [B0, B1] = 0 (3.9)

⇒
∣∣〈C〉

ψ

∣∣ ≤ 2

wie man an (3.6) sofort sieht.

3. Eine notwendige Bedingung für die Verletzung der Bell-CHSH-Ungleichung, d.h.
∣∣〈C〉

ψ

∣∣ > 2
ist also

[A0, A1][B0, B1] 6= 0 (3.10)

Wie Landau (1987) zeigt, ist diese Bedingung auch hinreichend. Der Eigenvektor von C zum
größten Eigenwert ist ein geeigneter Zustand des Systems.

4. Die Vertauschungsrelationen (3.3) sind natürlich dann erfüllt, wenn das SystemH =HA ⊗HB

aus zwei TeilsystemenHA,HB zusammengesetzt ist, sodass

A0 = A0,A ⊗ 1B, A1 = A1,A ⊗ 1B, B0 = 1A ⊗B0,B, B1 = 1A ⊗B1,B (3.11)

5. In einem zusammengesetzten System gilt aber für alle Produktzustände ψA ⊗ ψB ∈ HA ⊗HB∣∣〈(A0B0 + A0B1 + A1B0 − A1B1)
〉
ψA⊗ψB

∣∣ ≤ 2 (3.12)

denn
〈
ψA ⊗ ψB, (AB)ψA ⊗ ψB

〉
=
〈
ψA, AψA

〉〈
ψB, BψB

〉
. Da diese Erwartungswerte im In-

tervall [−1, 1] liegen, gilt für die Produkte immer die Bell-CHSH-Ungleichung.

6. In einem zusammengesetzten System ist daher das Vorliegen eines verschränkten Zustands eine
notwendige Bedingung für die Verletzung der Bell-CHSH-Ungleichung.

4 Verletzung der Bell-CHSH-Ungleichung an quantenmechani-
schen Systemen

Die Tsirelson-Ungleichung lässt es für Quantensysteme zu, dass Erwartungswerte auf der linken Seite
stehen, die größer als 2 sind und somit die Bell-CHSH-Ungleichung verletzen. Wir werden jetzt ein
solches Beispiel konstruieren.
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4.1 ... in der Theorie

Wir betrachten ein aus zwei Spin-1/2-Teilchen zusammengesetztes System in dem Hilbertraum2

H = C2 ⊗ C2. Die folgenden Matrizen aus L(C2) sind selbstadjungiert und haben die Eigenwer-
te {−1,+1}:

Z =

(
1 0
0 −1

)
X =

(
0 1
1 0

)
U =

1√
2

(
−1 −1
−1 1

)
= − 1√

2
(X + Z)

V =
1√
2

(
−1 1
1 1

)
=

1√
2

(X − Z)

Sie stellen die Observablen für die Spinkomponente eines Spin-1/2-Teilchens in unterschiedlichen
Raumrichtungen dar: x-Richtung, z-Richtung und ±45° in der x-z-Ebene.

Wir betrachten jetzt am zusammengesetzten System den verschränkten Zustand

ψ =
1√
2

(ϕz+ ⊗ ϕz− − ϕz− ⊗ ϕz+)

wobei ϕz+, ϕz− ∈ C2 die Eigenzustände von Z darstellen mit

Zϕz+ = ϕz+ =

(
1
0

)
(4.1)

Zϕz− = −ϕz− = −
(

0
1

)
(4.2)

sowie die Observablen
A0 = X ⊗ 1

A1 = Z ⊗ 1

B0 = 1⊗ U
B1 = 1⊗ V

Diese Observablen haben natürlich ebenfalls die Eigenwerte {+1,−1} und erfüllen die Vertauschungs-
relationen, sodass die Produkte A0B0, A0B1, A1B0, A1B1 ebenfalls Observablen definieren. Für die
Erwartungswerte im Zustand ψ ergibt sich〈
ψ,A0B0ψ

〉
=
〈
ψ,X ⊗ Uψ

〉
=

1

2

〈
ϕz+ ⊗ ϕz− − ϕz− ⊗ ϕz+, Xϕz+ ⊗ Uϕz− −Xϕz− ⊗ Uϕz+)

〉
=

1

2

(
−
〈
ϕz−, Uϕz+

〉
−
〈
ϕz+, Uϕz−

〉)
=

1

2

(
+

1√
2

1 +
1√
2

1

)
=

1√
2

und analog

〈
ψ,A0B1ψ

〉
=

1√
2

2Wir betrachten nur die Spinkomponenten, nicht die Ortskomponenten.
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〈
ψ,A1B0ψ

〉
=

1√
2〈

ψ,A1B1ψ
〉

= − 1√
2

und daher insgesamt〈
(A0B0 + A0B1 + A1B0 − A1B1)

〉
ψ

=
4√
2

= 2
√

2 ≈ 2, 8 (4.3)

Das bedeutet aber, die Erwartungswerte im Zustand ψ verletzen die Bell-CHSH-Ungleichung, denn
es gilt ∣∣〈(A0B0 + A0B1 + A1B0 − A1B1)

〉
ψ

∣∣ > 2 (4.4)

Dieses Beispiel zeigt aber auch, dass die Tsirelson-Schranke 2
√

2 in der Quantenmechanik tatsächlich
erreicht wird und somit im allgemeinen Fall keine stärkere Ungleichung angegeben werden kann.

4.2 ... im Experiment

Die von Bell errechnete Verletzung der Bell-CHSH-Ungleichung durch quantenmechanische Systeme
wurde vielfach experimentell bestätigt. Am bekanntesten sind die Photonen-Experimente von Aspect
et al. (1982), in denen dies erstmalig schlüssig nachgewiesen wurde. Mittlerweile ist eine Vielzahl
unterschiedlicher Varianten mit verschiedenen Teilchen getestet worden.

5 Einige einfache Folgerungen

5.1 Unmöglichkeit des Werterealismus für alle Observablen

Die Bell-CHSH-Ungleichung wäre auch dann erfüllt, wenn die vier Observablen A0, A1, B0, B1 im-
mer - auch ohne Messung - einen Wert−1 oder +1 hätten, der durch die Messung einfach “abgelesen”
wird. Offensichtlich ist dies in dem oben behandelten verschränkten Zustand nicht der Fall: Es ist aus-
geschlossen, dass die ObservablenA0, A1, B0, B1 im Zustand ψ unabhängig von einer Messung einen
definierten Wert haben, der bei einer Messung unverändert abgelesen wird, sonst könnte (4.3) nicht
gelten. In diesem Sinne ist die Quantenmechanik keine realistische Theorie: Die Werte der Observa-
blen können i.A. nicht unabhängig von der Messung bestehen.

Dies ist ein ähnliches Resultat, wie es die Theoreme von v. Neumann, Gleason und Kochen-Specker
nahelegen3

5.2 Inkompatibilität zwischen Quantenmechanik und klassischer Wahrschein-
lichkeitstheorie

Die klassische Wahrscheinlichkeitstheorie ist offensichtlich nicht ohne weiteres kompatibel mit der
Quantenmechanik. Die vier im Experiment gemessenen GrößenA0, A1, B0, B1 können zwar als quan-
tenmechanische Observablen behandelt werden, aber nicht als Funktionen auf dem Phasenraum der

3Mit dem Unterschied, dass dies hier nur für solche Zustände gefolgert werden kann, die die Bell-CHSH-Ungleichung
verletzen.
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klassischen statistischen Mechanik, d.h. als Zufallsvariablen auf einem Wahrscheinlichkeitsraum4,
denn dann müsste die Bell-CHSH-Ungleichung für alle Zustände erfüllt werden.

6 Lokalität und Bell-CHSH-Ungleichung

Aber diese Folgerungen waren Bell schon durch andere Gegebenheiten bekannt (vgl. Bell, 1966)
und nicht der wesentliche Punkt, der zu seinem Theorem führte. Das wichtige neue Resultat war
die Nicht-Lokalität aller realistischen Theorien, die die quantenmechanischen Ergebnisse erklären
können. Dabei dachte Bell an Theorien wie die Bohmsche Mechanik, die einen eigenen Satz von
realen Größen definieren, der aber nicht alle quantenmechanischen Observablen umfasst.

6.1 Simulation des Bell-CHSH-Experiments an einem Automaten

In einer realistischen Theorie werden die physikalischen Systeme mit Hilfe von Größen beschrieben,
die unabhängig von Messungen immer einen definierten Wert haben. Zwischen den Größen existieren
gewisse Abhängigkeiten, die durch Funktionen beschrieben werden.

Da der entscheidende Punkt in der Argumentation leicht übersehen wird, wollen wir ihn ausführ-
lich darlegen, indem wir den Versuchsaufbau als Automaten behandeln, der nach den Eingaben der
“Experimentatoren” jeweils “Messwerte” ausgibt. Man kann dabei an ein elektronisches Gerät (Spiel-
automaten) oder einen Computer denken, an dem das Experiment simuliert wird. Die “Lokalität” wird
mittels der Frage untersucht, inwieweit man den Automaten in “Teilautomaten” (mehrere Kästchen
statt einem) zerlegen kann und welche Datenverbindungen (Verbindungskabel) dabei benötigt wer-
den.

Ein Automat, der das Experiment simuliert, sollte folgende Ein- und Ausgänge haben:

Die zwei Eingänge iA, iB stellen die Richtungsauswahl der Experimentatoren A,B dar und können
jeweils zwei Werte, 0 oder 1, annehmen. Die zwei Ausgänge oA, oB geben die Messergebnisse wieder
und können die Werte +1 oder −1 anzeigen.

Ein Eingang λ soll alle weiteren Parameter (Teilcheneigenschaften, unbekannte bzw. verborgene Pa-
rameter der Versuchsanordnung, innere Automatenzustände) zusammenfassen5. Wir machen keine

4Trivialerweise kann jede Messung einer einzelnen Observablen bzw. die gemeinsame Messung eines Observablen-
paares als Messung von Zufallsvariablen auf einem Wahrscheinlichkeitsraum beschrieben werden. Nur für alle vier Obser-
vablen, die ja nicht gemeinsam gemessen werden können, kann kein gemeinsamer Wahrscheinlichkeitsraum angegeben
werden, in dem alle Observablen als Zufallsvariablen dargestellt werden.

5Man kann diesen Parameter weiter aufteilen z.B in λA, λB ohne etwas an den folgenden Überlegungen zu ändern.
Der Parameter λ kann auch innere Automatenzustände λi umfassen, z.B. λ = (λA, λB , λi) ∈ Λ
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Annahme über den Wertebereich Λ an diesem Eingang (eine Möglichkeit wäre Rn mit n ∈ N wie in
der klassischen statistischen Mechanik), gehen aber davon aus, dass es eine passende σ-Algebra A
gibt, sodass (Λ,A) ein Ereignisraum ist und wir die Wahrscheinlichkeitstheorie anwenden können6.

In einem klassischen 7 deterministischen Automaten gilt: Die Ausgabe ist eine Funktion der Eingaben
und des inneren Zustands des Automaten.

In unserem Fall sind angezeigten Ausgabewerte an den beiden Ausgänge oA, oB also Funktionen8 der
Eingaben iA, iB und von λ9

oA : {0, 1} × {0, 1} × Λ→ {−1,+1}, (iA, iB, λ) 7→ oA(iA, iB, λ) (6.1)

oB : {0, 1} × {0, 1} × Λ→ {−1,+1}, (iA, iB, λ) 7→ oB(iA, iB, λ) (6.2)

6.2 Ablauf der Simulation

Man kann in einer Computersimulation alle Eingänge inkl. λ mit den Ausgängen von unabhängigen
Zufallsgeneratoren verbinden. Bei jedem Durchlauf des Experiments werden dann zufällige Werte für
λ und iA, iB eingegeben, anschließend wird ein Wertepaar an den Ausgängen oA, oB abgelesen und
das Produkt oAoB notiert.

Je nach Eingabe für iA, iB kann man an den Ausgängen eines der vier Wertepaare

[oA(0, 0, λ), oB(0, 0, λ)] , ..., [oA(1, 1, λ), oB(1, 1, λ)]

(bei jeweils unbekanntem λ) ablesen. Um die Ergebnisse mit der Bell-CHSH-Ungleichung zu ver-
gleichen, ermittelt man in vielen Wiederholungen mit unterschiedlichen Eingaben die Mittelwert der
Produkte

oA(0, 0, λ)oB(0, 0, λ), ..., oA(1, 1, λ)oB(1, 1, λ)

wobei die Eingaben für iA, iB von den Zufallsgeneratoren unabhängig und gleichverteilt generiert
werden. Schließlich wird für die Bell-CHSH-Ungleichung der Mittelwert

c = oA(0, 0, λ)oB(0, 0, λ)− oA(0, 1, λ)oB(0, 1, λ) + oA(1, 0, λ)oB(1, 0, λ) + oA(1, 1, λ)oB(1, 1, λ)
(6.3)

berechnet und als Messwert bzw. Schätzwert des theoretischen Erwartungswertes betrachtet.

Beispiel Mit Λ = {0, 1} könnte ein einfacher Automat durch die folgenden Funktionen definiert
werden

oA(iA, iB, λ) = 2iA − 1 (6.4)

oB(iA, iB, λ) = (1− 2iB)(2λ− 1) (6.5)

Die Wertetabelle zeigt 8 Wiederholungen des Experiments mit diesem Automaten

6Ein Bedingung, die in endlichen Automaten trivialerweise stets erfüllt ist.
7Quantenschaltkreise (quantum circuits), wie sie in Quantencomputern Verwendung finden, müssen an dieser Stelle

explizit ausgeschlossen werden.
8wobei wir die A-Messbarkeit der Funktionen voraussetzen.
9oedA werden innere Automatenzustände ggf. zu λ gezählt
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Nr. iA iB λ oA oB oAoB

1 0 0 0 -1 1 -1
2 0 1 0 -1 -1 1
3 1 0 0 1 1 1
4 1 1 0 1 -1 -1
5 0 0 1 -1 -1 1
6 0 1 1 -1 1 -1
7 1 0 1 1 -1 -1
8 1 1 1 1 1 1

und allen möglichen Eingabekombinationen. Dabei ergibt sich c = 0, was bei einer großen Anzahl
von Wiederholungen mit zufälligen, unabhängigen und gleichverteilten Eingaben für iA, iB, λ eben-
falls angenähert herauskommen sollte.

6.3 Eine hinreichende Bedingung für die Erfüllung der Bell-CHSH-Ungleichung

Immer dann, wenn die Funktionen oA, oB nicht von der Eingabe der Gegenseite abhängen, d.h. wenn
für alle iA, iB ∈ {0, 1} und alle λ ∈ Λ gilt

oA(iA, 0, λ) = oA(iA, 1, λ) (6.6)

oB(0, iB, λ) = oB(1, iB, λ) (6.7)

können die Ergebnisse an den Ausgängen durch vier Funktionen von λ alleine (oder durch Konstan-
ten) dargestellt werden

a0 : Λ→ {−1,+1}, λ 7→ a0(λ) = oA(0, 0, λ) = oA(0, 1, λ)

a1 : Λ→ {−1,+1}, λ 7→ a1(λ) = oA(1, 0, λ) = oA(1, 1, λ)

b0 : Λ→ {−1,+1}, λ 7→ b0(λ) = oB(0,0, λ) = oB(1,0, λ)

b1 : Λ→ {−1,+1}, λ 7→ b1(λ) = oB(0,1, λ) = oB(1,1, λ)

Diese Funktionen (oder Konstanten) sind aber nichts anderes als 4 Zufallsvariablen a0, a1, b0, b1 auf
dem Ereignisraum (Λ,A)10, die nur die Werte +1 und −1 annehmen können, sodass der Erwartungs-
wert ∣∣〈c〉

µ

∣∣ =
∣∣〈a0b0 + a0b1 + a1b0 − a1b1

〉
µ

∣∣ ≤ 2

für jedes Wahrscheinlichkeitsmaß µ auf (Λ,A) die Bell-CHSH-Ungleichung erfüllen muss.

Den zugehörigen Automaten kann man dann immer in Teilautomaten so zerlegen, dass man ohne
Verbindung von A nach B und B nach A auskommt, da oA nicht von iB und oB nicht von iA abhängt,
wie das folgende Diagramm zeigt:

10An dieser Stelle setzen wir die Borelmessbarkeit der Funktionen voraus. Abgesehen von der Tatsache, dass zumindest
bei endlichen Automaten die Funktionen immer messbar sind, zeigt 2.4, dass man den Zusammenhang auch allgemeiner,
ohne messbare Funktionen, beweisen kann.
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Beispiel Im obigen Beispiel ist diese Bedingung durch die Funktionen (6.4) erfüllt und es ergibt
sich für die vier Zufallsvariablen

a0 = −1, a1 = 1

b0 = 2λ− 1, b1 = 1− 2λ

6.4 Eine notwendige Bedingung für die Verletzung der Bell-CHSH-Ungleichung

Soll dagegen die Bell-CHSH-Ungleichung von einem klassischen deterministischen Automaten ver-
letzt werden, so muss im Umkehrschluss das Ergebnis oA auch von der Eingabe iB abhängen oder
das Ergebnis oB von der Eingabe iA.

Das bedeutet aber, dass bei den Teilautomaten immer eine Verbindung von A nach B oder umgekehrt
bestehen muss, wie sie im Schaltbild durch cAB eingetragen ist (wobei eine Richtung bereits ausreicht,
s.u. Beispiel).

Die Ausgänge der Schaltung können dann nicht durch vier Zufallsvariablen auf einem Ereignisraum
dargestellt werden. Man benötigt im Maximalfall, wenn alle Ergebnisse von beiden Eingaben iA, iB
anhängen, acht Funktionen von λ

a0,0(λ) = oA(0, 0, λ), a0,1(λ) = oA(0, 1, λ)

a1,0(λ) = oA(1, 0, λ), a1,1(λ) = oA(1, 1, λ)

b0,0(λ) = oB(0, 0, λ), b0,1(λ) = oB(0, 1, λ)

b1,0(λ) = oB(1, 0, λ), b1,1(λ) = oB(0, 1, λ)
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also acht Zufallsvariablen auf dem Ereignisraum (Λ,A). Für jedes Wahrscheinlichkeitsmaß µ auf
(Λ,A) gilt dann für den Erwartungswert∣∣〈c〉

µ

∣∣ =
∣∣〈a0,0b0,0 + a0,1b0,1 + a1,0b1,0 − a1,1b1,1

〉
µ

∣∣ ≤ 4 (6.8)

wobei der Wert 4 auch erreicht werden kann, wie das folgende Beispiel zeigt.

Beispiel Ein maximale Verletzung der Bell-CHSH-Ungleichung wird durch folgende Funktionen
generiert

oA(iA, iB, λ) = 1

oB(iA, iB, λ) = 1− 2iAiB

Dabei gilt dann
a0,0 = 1, a0,1 = 1, a1,0 = 1, a1,1 = 1

b0,0 = 1, b0,1 = 1, b1,0 = 1, b1,1 = −1

und somit konstant c = 4.

6.5 Bells Theorem

Diese Überlegungen zeigen, dass es keinen klassischen, deterministischen Automaten geben kann, der
für die Erwartungswerte der Ausgangsgrößen die Bell-CHSH-Ungleichung verletzt und ohne Verbin-
dung zwischen A und B auskommt. Das gleiche Ergebnis gilt auch für stochastische Automaten (die
immer durch deterministische Automaten mit zusätzlichen Eingängen für zufällige Eingaben durch
Zufallsgeneratoren, simuliert werden können) und eben auch für alle klassisch-physikalischen Me-
chanismen.

In die Sprache der Physik zurückübersetzt heißt das: Es ist nicht möglich, in einer realistischen Theo-
rie mit funktionalen Abhängigkeiten die Ergebnisse der Bell-CHSH-Experimente zu beschreiben,
wenn nicht die Ergebnisse von A auch von der Auswahl von B abhängen oder umgekehrt.

Dies ergibt dann Bells Theorem: Keine physikalische Theorie, die realistisch und lokal ist, kann in
allen statistischen Aussagen mit der Quantenmechanik übereinstimmen.

Bemerkungen

1. Sind die Messungen und die entsprechenden Auswahlentscheidungen von A und B im Sin-
ne der Relativitätstheorie raumartig voneinander getrennt, wie in Gisins Experimenten (Gisin
et al., 2008), so muss für jede realistische Theorie eine “spukhafte Fernwirkung” zwischen A
und B angenommen werden, die nach den experimentellen Daten mindestens mit 10000facher
Lichtgeschwindigkeit übertragen wird.

2. Dies führt zu der Frage, ob man nicht unter Ausnutzung dieser Effekte Signale mit Überlichtge-
schwindigkeit übertragen kann. Das No-Communication-Theorem zeigt, dass dies unmöglich
ist (vgl. Peres and Terno, 2004). Speziell betrachtet man dazu die quantenmechanischen Er-
wartungswerte der Messergebnisse von B, unter der Bedingung, dass A eine der verschiedenen
möglichen Messungen (oder keine) vornimmt, und stellt fest, dass sich diese Erwartungswerte
unter diesen Bedingungen nicht ändern.
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3. In der Bohmschen Theorie, die Bell bei der Aufstellung des Theorems untersuchte, erfolgt
die Fernwirkung instantan vermittelt durch die Wellenfunktion des Gesamtsystems, die durch
Wechselwirkung mit der Versuchsapparatur, z.B. den Stern-Gerlach-Magneten, verändert wird.
Die Auswahl von A schlägt sich in einer veränderten lokalen Wechselwirkung nieder, die aber
die Wellenfunktion auch für B ändert und somit das Quantenpotential für das zugehörige Teil-
chen. In anderen realistischen Theorien (Nelsons Stochastischer Mechanik, Catichas Entropi-
scher Dynamik) bleibt der Fernwirkungsmechanismus unklar. Alle Wahrscheinlichkeiten fol-
gen einfach den jeweiligen Gesetzen, die die gleichen Resultate liefern wie die QM.

4. Die Verletzung der Bellschen Ungleichung ohne Wechselwirkung zwischen entfernten Teil-
systemen ist eine besondere Eigenschaft der QM. Im Zusammenhang mit Bells Theorem wird
oftmals formuliert, dass die QM nicht-lokal sei. Dies hängt natürlich von der Definition von Lo-
kalität und der Interpretation der Wellenfunktion ab. Nicht-lokale Korrelationen zwischen Teil-
systemen mit einer gemeinsamen Vergangenheit gibt es auch in klassischen Theorien. Akzep-
tiert man die der QM zugrundeliegende (nicht-realistische) verallgemeinerte Wahrscheinlich-
keitstheorie, so kann man auch die QM als lokale Theorie verstehen, die ohne Wechselwirkung
zwischen A und B eben Korrelationen bis zur Tsirelsonschranke zulässt. Mit Wechselwirkung
zw. A und B, genauer mit einer unitären Transformation im Produkthilbertraum, die kein Pro-
dukt von unitären Transformationen der Faktorhilberträume ist, kann auch ein Quantenautomat
die Tsirelsonschranke bis zum Wert 4 überschreiten.

5. Bei den Folgerungen, die zu Bells Theorem führen, wird stillschweigend eine weitere Voraus-
setzung gemacht, nämlich dassA undB unabhängig - voneinander und von den Teilchen bzw. λ
- ihre Auswahl treffen können. Automatentheoretisch ist dies kein Problem, metaphysisch lässt
sich allerdings der Einwand formulieren, dass in einer vollständig determinierten Welt diese
Unabhängigkeit nicht gegeben sein muss, zumal λ verborgene, unbeobachtbare Parameter um-
fasst. Diese Einschränkungen der Wahlmöglichkeiten der Experimentatoren bezeichnet man
auch als Superdeterminismus. Damit ist möglich, die Bellsche Ungleichung auch ohne ’reale’
Fernwirkung zu verletzten, wenn die gemeinsame Determination die notwendigen Abhängig-
keiten der Eingabewerte von A und B erzeugt. Im obigen Beispiel mit “lokalen” Funktionen
(6.4) liefern aufeinander abgestimmte Werte von λ und iA, iB nach der folgenden Tabelle einen
Wert von c = −4, selbst wenn die Eingaben für iA und iB untereinander stochastisch unabhän-
gig sind.

iA iB λ oA oB oAoB

0 0 1 -1 -1 1
0 1 0 -1 -1 1
1 0 0 1 1 1
1 1 0 1 -1 -1

Die Frage bleibt allerdings, ob man in einem solchen Fall noch von Lokalität sprechen soll-
te, denn indirekt über λ hängen die Ergebnisse dann nicht-lokal von iA, iB ab.
In Experimenten wurde dieses Thema insofern aufgegriffen, als dass man die Richtungsent-
scheidungen in Abhängigkeit von interstellaren Photonen getroffen hat, deren Emission Jahr-
hunderte zurücklag (Handsteiner et al. 2017). Es ist schwer vorstellbar, dass diese mit den
Emissionen der irdischen Teilchenquelle korreliert sind.
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